
Adriana WISE Wednesday, September 9, 2015

Python
The Simplest Python Program

#!/usr/bin/python

print "Hello, Python!”

To compile and run:

$ python hello.py
Hello, Python!

About Python

Python is an interpreted, interactive, object-oriented language:
• interpreted—processed at runtime by the interpreter. Python code does not

need to be pre-compiled before running (just like Perl or PhP)
• interactive—there is a Python prompt where commands can be typed
• object-oriented—Python supports code within objects.

Installing Python

To find out whether Python is installed on your system, type python from the
command line:

$ python
Python 2.7.6 (default, Sep 9 2014, 15:04:36)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.39)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>>

This also drops you into Python prompt mode.

Python can be downloaded from www.python.org.

For MacOS X, download from http://www.python.org/download/mac/. For
Windows, download from http://www.python.org/download/, and follow the link
for the Windows installer python-XYZ.msi file, where XYZ is the version. The

�1

http://www.python.org
http://www.python.org/download/mac/
http://www.python.org/download/

Adriana WISE Wednesday, September 9, 2015

Windows system must support Microsoft Installer 2.0. Run the downloaded file.
This brings up the Python install wizard, which is really easy to use.

Command Line Options

Interactive vs. Script Mode Programming

Interactive prompt:
>>> print "Hello, world!"
Hello, world!

Script mode:
$ python hello.py
Hello, Python!

Python Identifiers

Identifiers are names for variables, functions, classes, modules, or other objects.
Identifiers can start with uppercase letters A…Z, lowercase letters a…z,
underscores _, and digits 0…9. Identifiers cannot contain characters such as @, $,
or %. Python is case sensitive.

Naming conventions in Python:
classes—start with an uppercase letter
other identifiers—lowercase letter
private identifiers—start with a single leading underscore
strongly private identifiers—start with two leading underscores

Option Description

-d with debug

-O generate optimized bytecode (*.pyo files)

-S do not run import site to look for Python paths on startup

-v verbose output

-X disable class-based build-in exceptions

-c cmd run Python script sent in as cmd string

file run Python script from given file

�2

Adriana WISE Wednesday, September 9, 2015

language-defined special names—end with two trailing underscores

Reserved words:

Proper Indentation

Python relies on strict indentation to delimit blocks of code, such as class and
function definitions, or flow control.

Strings

Strings are sequences of characters enclosed in quotes.

Example:

#!/usr/bin/python

greeting='Hello World!'
my_name="Adriana WISE"

print "greeting[0:6]: ", greeting[0:6]
print "my_name[0:8]: ", my_name[0:8]

Output:

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

del import try

elif in while

else is with

except lambda yield

�3

Adriana WISE Wednesday, September 9, 2015

$ python strings.py
greeting[0:6]: Hello
my_name[0:8]: Adriana

Lists

Lists are sequences of comma-separated values within square brackets, not
necessarily of the same type.

Example:

#!/usr/bin/python

names=['Lyle PUENTE', 'Tyler JOSEPH', 'Josh DUN']
numbers= [1, 2, 3, 4, 5, 6, 7];

print "names[0]: ", names[0]
print "numbers[0:5]: ", numbers[0:5]

Output:

$ python lists.py
names[0]: Lyle PUENTE
numbers[0:5]: [1, 2, 3, 4, 5]

Tuples

Unlike lists, tuples are immutable (cannot be changed). Their syntax includes
parentheses, not square brackets.

Dictionaries

A dictionary is like a hash table. It consists of a sequence of key, value pairs. Keys
are immutable (just like in a database).

#!/usr/bin/python

dict = {'Name':'Lyle PUENTE', 'Age':53, 'Num_Albums':6}

print "dict['Name']=", dict['Name']
print "dict['Age']=", dict[‘Age']

Output:

�4

Adriana WISE Wednesday, September 9, 2015

$ python dictionary.py
dict['Name']= Lyle PUENTE
dict['Age']= 53

Python provides a series of dictionary functions (functions that take a dictionary
value as an argument) and methods (functions that operate on a dictionary object).

The following table gives the dictionary methods:

Function Description

cmp(dict1, dict2) Compares 2 dictionaries element by element. Returns
boolean.

len(dict) Returns # of elements of a dictionary.

str(dict) Returns a printable string representation of a
dictionary.

type(variable) Returns the type of the argument variable.

Method Description

dict.clear() Clears dictionary object dict.

dict.copy() Returns a copy of object dict.

dict.fromkeys() Creates a dictionary with keys from
sequence, and values set to values.

dict.get(key,
default=None)

Returns values associated with key, or
none if key not in dictionary.

dict.has_key(key) Returns true if key in dictionary.

dict.items() Returns all (key, value) pairs.

dict.keys() Returns a list of all keys of dict.

dict.setdefault(key,
default=None)

Same as get(), but will set
dict[key]=default if key not in
dict.

Method

�5

Adriana WISE Wednesday, September 9, 2015

Example:

#!/usr/bin/python

dict = {'Name':'Lyle PUENTE', 'Age':53, 'Num_Albums':6};

print "dict['Name']=", dict['Name']
print "dict['Age']=", dict['Age']
print dict.items();
print dict.keys();

Output:
$ python dictionary.py
dict['Name']= Lyle PUENTE
dict['Age']= 53
[('Age', 53), ('Name', 'Lyle PUENTE'), ('Num_Albums', 6)]
['Age', 'Name', 'Num_Albums']

Decision Statements

An if-else statement evaluates the truth value of a Boolean expression and
executes the if branch on TRUE, otherwise the else branch on FALSE.

Example:

#!/usr/bin/python

my_string='Adriana WISE'

if (my_string=='Adriana WISE'):
 print "My name is %s" % my_string

print "Good bye!”

Output:

dict.update(dict2) Adds (key, value) pairs of dict2 to
dict.

dict.values() Returns a list of all values of dict.

DescriptionMethod

�6

Adriana WISE Wednesday, September 9, 2015

$ python if.py
My name is Adriana WISE
Good bye!

The for Loop

The for loop executes a statement or a block of statements a fixed number of
times, as stated in the for expression.

Example:

#!/usr/bin/python

my_name='Adriana WISE'

for i in range(0, 10):
 print my_name

Output:

$ python for.py
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE

The while Loop

The while loop executes a statement or a block of statements for as many
iterations as the condition set in the Boolean expression from the while statement
remains TRUE.

Example:

#!/usr/bin/python

�7

Adriana WISE Wednesday, September 9, 2015

my_name='Adriana WISE'

i=0
while (i<10):
 print my_name
 i+=1

Output:

$ python while.py
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE
Adriana WISE

Functions

Like every other language, Python provides built-in functions and user-
defined functions. Here are some of the rules for designing user-defined
functions:
• Function blocks begin with the keyword def followed by the function name and

parentheses.
• Function input parameters (a.k.a. arguments) are listed comma-separated

within these parentheses.
• The first statement of a function can be an optional statement—the

documentation string of the function or docstring.
• The code block within every function starts with a colon : and is indented.
• The statement return [expression] exits a function, optionally passing

back a return value to the caller (another function).

Syntax:

def function_name(parameters):
 "function_docstring"

�8

Adriana WISE Wednesday, September 9, 2015

 function_suite
 return [expression]

Example:

#!/usr/bin/python

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return

Now you can call printme function
my_string="My name is Adriana WISE.”
printme(my_string)

Output:

$ python function.py
My name is Adriana WISE.

Pass by Reference vs. Pass by Value

In Python, all arguments are passed by reference. Any modification to the
argument value made within the function will reflect in the caller. For example, if
in our printme() function we changed the value of num, resetting it to a new
value, the caller will reflect this new value. This behavior is not true for call-by-
value arguments in languages supporting that (such as C, C++, Pascal etc.). It is not
true for immutable types such as numeric, string in Python, either.

Example:

#!/usr/bin/python

Function definition is here
def change(original_list):
 "This changes a list passed into this function"
 original_list+=['Josh DUN']
 return

original_list=['Lyle PUENTE', 'Tyler JOSEPH']

�9

Adriana WISE Wednesday, September 9, 2015

print original_list
change(original_list)
print original_list

Output:

$ python function2.py
['Lyle PUENTE', 'Tyler JOSEPH']
['Lyle PUENTE', 'Tyler JOSEPH', 'Josh DUN’]

Variable Argument Lists

Python supports variable argument lists. The following example shows a function
with two arguments, of which the second one has variable length.

Example:

#!/usr/bin/python

Function definition is here
def printinfo(arg1, *vartuple):
 "This prints a variable list of arguments"
 print "Output is: "
 print "arg1=", arg1
 for var in vartuple:
 print var
 return;

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)

Output:

$ python vararglists.py
Output is:
arg1= 10
Output is:
arg1= 70
60
50

�10

Adriana WISE Wednesday, September 9, 2015

Lambda Functions

These functions are also called anonymous because they are not declared in the
standard manner by using the def keyword. Instead, the lambda keyword is used
to create small anonymous functions.
• lambda functions can take any number of arguments, but their body contains

one line (one expression), whose value they return
• lambda functions cannot access variables other than those in their argument list,

or those in the global namespace

Syntax:

lambda [arg1 [,arg2,…, argn]]:expression

Example:

#!/usr/bin/python

sum=lambda arg1, arg2: arg1 + arg2;

print "Sum=", sum(10, 20)
print "Sum=", sum(20, 20)

#Alternate function definition
def sum(arg1, arg2):

“This function returns the sum of its arguments”
s=arg1+arg2
return s

Output:

$ python lambda.py
Sum= 30
Sum= 40

Global vs. Local Variables

Like in other languages, Python recognizes a global scope, meaning that
variables declared globally are visible to every function; and a local scope,
meaning that variables declared local to a function or a block of code are only
visible in that scope.

�11

Adriana WISE Wednesday, September 9, 2015

Example:

#!/usr/bin/python

total=0; #This is a global variable.

#Function definition
def sum(arg1, arg2):
 "Add both the parameters and return them."
 total=arg1+arg2;
 print "Inside the function, local variable total=",
total
 return total;

sum(10, 20);
print "Outside the function, global variable total=", total

Output:

$ python globalvslocal.py
Inside the function, local variable total= 30
Outside the function, global variable total= 0

Python Modules

A Python module allows functions or classes to be defined in a separate file, which
can be imported in the main program. This separation makes it easier to maintain
large code categorized by functionality and classes.

Below is a simple example, consisting of a function defined in a separate file. The
file is then imported as a module in the main program. By so doing, the function is
automatically known, and can be called by, the main program.

Example:

File name_mod.py, importable as module name_mod:

def print_func(par):
 print "Hello,", par
 return

File main_prog.py, which imports name_mod, and which will be executed:

�12

Adriana WISE Wednesday, September 9, 2015

#!/usr/bin/python

Import module support
import name_mod

Now you can call defined function that module as follows
name_mod.print_func("Adriana WISE”)

Output:

$ python main_prog.py
Hello, Adriana WISE

A main program may import only part of the attributes defined in a Python
module, and not the entire module. The list of attributes specified in the import
statement is then included in the global symbol table of the importing module (or
main program).

The dir() function returns all attributes defined in a module.

Syntax:

from mod_name import name1[, name2, …, nameN]

Example:

#!/usr/bin/python

Import module support
import name_mod as module
from module import hello_func

content=dir(module)
print content

hello_func("Adriana WISE")

Output:

$ python main_prog.py

�13

Adriana WISE Wednesday, September 9, 2015

['__builtins__', '__doc__', '__file__', '__name__',
'__package__', 'bye_func', 'hello_func']
Hello, Adriana WISE

However, if we wanted to access the function module.bye_func() from
name_mod imported as module, we would get an error:

Source:

#!/usr/bin/python

Import module name_mod
import name_mod as module
from name_mod import hello_func

content=dir(module)
print content

hello_func("Adriana WISE")
bye_func("Lyle PUENTE”)

Output:

$ python main_prog.py
['__builtins__', '__doc__', '__file__', '__name__',
'__package__', 'bye_func', 'hello_func']
Hello, Adriana WISE
Traceback (most recent call last):
 File "main_prog.py", line 11, in <module>
 bye_func("Lyle PUENTE")
NameError: name 'bye_func' is not defined

File I/O

Writing to standard output (terminal) is done with the print function:

#!/usr/bin/python

print "My name is Adriana WISE.”

Output:

$ python print.py

�14

Adriana WISE Wednesday, September 9, 2015

My name is Adriana WISE.

(Same old, same old.)

Reading from standard output is done with two Python built-in functions,
raw_input() and input(). The raw_input() function reads one line from
the command line and returns the input as string. The input() function
interprets the input expression or variable to the appropriate type.

Example 1:

#!/usr/bin/python

str = raw_input(“Enter your name: ");
print “Hello,", str

Output:

$ python input.py
Enter your name: Adriana WISE
Hello, Adriana WISE

Example 2:

#!/usr/bin/python

str = input("Enter your input: ");
print "Received input is : ", str

Output:

$ python raw_input.py
Enter your input: [x*5 for x in range(2, 10)]
Received input is : [10, 15, 20, 25, 30, 35, 40, 45]

$ python raw_input.py
Enter your input: [x*5 for x in range(2, 10, 2)]
Received input is : [10, 20, 30, 40]

File I/O is done via a file object. To open a file for reading or writing, Python
provides the open() function, called with the following parameters:
file_name—a string value with the name of the file

�15

Adriana WISE Wednesday, September 9, 2015

access_mode—the mode of file opening: read, write, append etc. A complete list
of the file access modes is given below
buffering—I/O can be unbuffered (with an arg value of 0) or buffered (an arg
value of 1).

The file object attributes are shown in the following table.

Mode Description

r Open file for reading.

rb Open file for reading in binary format.

r+ Open file for reading and writing.

rb+ Open file for reading and writing in binary format.

w Opens a file for writing, overwrites if file exists.

wb Opens file for writing in binary format.

w+ Opens file for writing and reading.

wb+ Opens file for writing and reading in binary format.

a Opens a file for appending. Creates a new file if file does not exist.

ab Opens a file for appending in binary format.

a+ Opens file for appending and reading.

ab+ Opens file for appending and reading in binary format.

Attribute Description

file.closed TRUE if file is closed, FALSE otherwise.

file.mode Returns access mode for file.

file.name Returns name of file.

file.softspace FALSE if space explicitly with print, TRUE otherwise.

�16

Adriana WISE Wednesday, September 9, 2015

Example:

#!/usr/bin/python

Open a file
fo=open("text.txt", "wb")
print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode
print "Softspace flag : ", fo.softspace

Output:

$ python fileio.py
Name of the file: text.txt
Closed or not : False
Opening mode : wb
Softspace flag : 0

The close() function closes a file.

Example:

#!/usr/bin/python

Open a file
fo=open("text.txt", "wb")
print "Name of the file: ", fo.name

Close opened file
fo.close()

Output:

$ python close.py
Name of the file: text.txt

The file object can be read or written with one of the read() or write()
functions.

Example 1:

!/usr/bin/python

�17

Adriana WISE Wednesday, September 9, 2015

Open a file
fo=open("foo.txt", "wb")
fo.write("Python is a great language.\nYeah its great!!\n");

Close opened file
fo.close()

Output:

$ more foo.txt
Python is a great language.
Yeah its great!!

Example 2:

#!/usr/bin/python

Open a file
fo=open("foo.txt", "r+")
str=fo.read(10);
print "Read string is : ", str
Close opened file
fo.close()

Output:

$ python read.py
Read string is : Python is

Classes

Class: A user-defined prototype for an object, defining a set of attributes that
characterize any object of the class. The attributes are data members and
methods, accessed via dot notation. Terminology:
• Class variable: A variable that is shared by all instances of a class.
• Data member: A class variable that holds data associated with a class.
• Function overloading: The assignment of more than one behavior to a

particular function. The operation performed varies with the types of
arguments to the function.

• Instance variable: A variable that is defined inside a method and belongs only
to the current instance of a class.

�18

Adriana WISE Wednesday, September 9, 2015

• Inheritance: The transfer of the characteristics of a class to other classes that
are derived from it.

• Instance: An object from a class.
• Instantiation: The creation of an object, as an “instance” of a class.
• Method : A class function.
• Object: An instance of the class. An object comprises both data members (class

variables and instance variables) and methods.
• Operator overloading: The assignment of more than one function to a

particular operator.

Example:

class Musician:
'Common base class for all musicians'

 musiciansCount = 0

 def __init__(self, name, age):
 self.name = name
 self.age = age
 Musician.musiciansCount += 1

 def displayCount(self):
 print “Number of musicians %d" % Musician.musiciansCount

 def displayMusician(self):
 print "Name : ", self.name, ", Age: ", self.age

Class instantiation:

musician1=Musician(“Lyle PUENTE", 53)
musician2=Musician(“Tyler JOSEPH", 26)
musician3=Musician(“Josh DUN”, 27)

The following functions can be used to access attribute information:
getattr(obj, name[, default]) : accesses the attribute of object.
hasattr(obj, name) : checks if an attribute exists or not.
setattr(obj, name, value) : sets an attribute’s value; creates attribute if
it does not exist.
delattr(obj, name) : deletes an attribute.

Every Python class has a number of built-in attributes, accessible with the dot
operator like all other attributes:

�19

Adriana WISE Wednesday, September 9, 2015

__dict__: Dictionary containing the class's namespace.
__doc__: Class documentation string or none, if undefined.
__name__: Class name.
__module__: Module name in which the class is defined. This attribute is
"__main__" in interactive mode.
__bases__: A possibly empty tuple containing the base classes, in the order of
their occurrence in the base class list.

Example:

#!/usr/bin/python

class Musician:
 'Common base class for all musicians'
 musiciansCount = 0

 def __init__(self, name, age):
 self.name = name
 self.age = age
 Musician.musiciansCount += 1

 def displayCount(self):
 print "Total musicians %d" %
Musician.musiciansCount

 def displayMusician(self):
 print "Name : ", self.name, ", Age: ", self.age

 print "Musician.__doc__:", Musician.__doc__
 print "Musician.__name__:", Musician.__name__
 print "Musician.__module__:",
Musician.__module__
 print "Musician.__bases__:", Musician.__bases__
 print "Musician.__dict__:", Musician.__dict__

musician1=Musician("Lyle PUENTE", 53)
musician2=Musician("Tyler JOSEPH", 26)

musician1.displayMusician()
musician2.displayMusician()

�20

Adriana WISE Wednesday, September 9, 2015

Output:

$ python class.py
Name : Lyle PUENTE , Age: 53
Musician.__doc__: Common base class for all musicians
Musician.__name__: Musician
Musician.__module__: __main__
Musician.__bases__: ()
Musician.__dict__: {'musiciansCount': 2, '__module__':
'__main__', 'displayCount': <function displayCount at
0x103a01aa0>, 'displayMusician': <function displayMusician at
0x103a01410>, '__doc__': 'Common base class for all musicians',
'__init__': <function __init__ at 0x1039fec80>}
Name : Tyler JOSEPH , Age: 26
Musician.__doc__: Common base class for all musicians
Musician.__name__: Musician
Musician.__module__: __main__
Musician.__bases__: ()
Musician.__dict__: {'musiciansCount': 2, '__module__':
'__main__', 'displayCount': <function displayCount at
0x103a01aa0>, 'displayMusician': <function displayMusician at
0x103a01410>, '__doc__': 'Common base class for all musicians',
'__init__': <function __init__ at 0x1039fec80>}

Regular Expressions

Like Perl, Python has built-in functions to deal with finding patterns into strings,
a.k.a. regular expressions. These functions are match() and search().
The module re (regular expressions) provides full support for Perl-like regular
expressions in Python. The re module raises the exception re.error if an error
occurs while compiling or using a regular expression.

Syntax:

re.match(pattern, string, flags=0)

The arguments are:
pattern—the regular expression (pattern) to be found and matched in the string
string—the string the pattern is searched into
flags—modifiers which can be combined with bitwise or |.

�21

Adriana WISE Wednesday, September 9, 2015

The following table shows some of the methods of the match object:

Metacharacters Meaning

- range

. matches any character, except a newline character. If the
DOTALL flag was specified, it also matches a newline

^ complements a characters class, i.e. items not in the class, e.g.
[^5]

^ matches the regex at the start of a string. In MULTILINE
mode also matches immediately after each newline

$ matches the regex at the end of a string

* greedy repetition (matches 0 or more times)

+ matches 1 or more times

? matches 1 or 0 times

{} {m, n} at least m, and at most n repetitions

[] specify a character class, meaning a set of characters to
match, e.g. [abc], [a-c]

\ escape character (to match metacharacters, for example)

| A|B where A, B are regular expressions (patterns) creates a
new regex (a new pattern) that will match either A or B

() matches a regex indicated within the (), and is used for
applying other qualifiers to the regex within the ()

Method Meaning

group() return the entire string matched by the
regex

start() return the starting position of the
match

end() return the ending position of the match

Method

�22

Adriana WISE Wednesday, September 9, 2015

Example:

#!/usr/bin/python

import re

my_string='Lyle PUENTE'

regex='(.yle)*'

matchObj=re.match(regex, my_string, re.I|re.M)

if matchObj:
 print matchObj
 print matchObj.group()
else:
 print 'No match!’

Output:

$ python regex1.py
<_sre.SRE_Match object at 0x1033c3a80>
Lyle

To find all the matches of a pattern into a string, Python provides two built-in
methods for the re object, re.findall(regex, string) and
re.finditer(regex, string).

Example 1:

#!/usr/bin/python

import re

my_string='Lyle PUENTE and Tyler JOSEPH'

regex='(.yle.)'

span() return a tuple (start, end) containing the
pair starting, ending position of the
match

MeaningMethod

�23

Adriana WISE Wednesday, September 9, 2015

matchObj2=re.findall(regex, my_string)

if matchObj2:
 print matchObj2
else:
 print 'No match!’

Output:

$ python regex1.py
['Lyle ', 'Tyler']

Example 2:

#!/usr/bin/python

import re

my_string='Lyle PUENTE and Tyler JOSEPH'

regex='(.yle.)'

for m in re.finditer(regex, my_string):
 print m.group()
Output:

$ python regex2.py
Lyle
Tyler

�24

