
Adriana WISE Wednesday, September 2, 2015

SQLite

What is SQLite

SQLite is an SQL database engine, which doesn’t have a separate server
process. SQLite reads and writes directly to disk files. An SQLite database
consisting of multiple tables, indices, triggers, and views, is contained within a
single disk file. The file format is cross-platform, meaning it is supported by
32-bit and 64-bit architectures alike, as well as by big-endian vs. little endian
architectures.

The size of SQLite with all features enables ranges between ! , where
! . Because SQLite can run on minimal stack space (!) and
heap (!), it has become a very popular database engine for memory
constrained devices such as cellphones, PDAs, and MP3 players. Although there is
an inversely proportional relationship between its memory usage and its speed,
SQLite can be performant even in low-memory environments.

ACID transactions are database transactions characterized
by atomicity, consistency, isolation, durability.

An atomic transaction is a series of database operations executing as a group, at
the same time. These operations cannot be divided apart and executed partially
from each other.

A consistent transaction obeys the requirement that the transaction can change
the data only in allowed ways. Any data written to the database must be valid
according to all defined rules, including constraints, cascades, triggers, and
any combination thereof.

An isolated transaction is a transaction with low visibility to other users and
systems. This is necessary to prevent concurrent writes to the same database by
different users and systems to generate dirty reads or lost updates. The isolation
level of a DB defines when the effects of a transaction become visible to another
transaction.

A durable transaction, once committed, survives permanently.

300…500()kB
1kB =210B =1,024B 4kB

100kB

�1

https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/Cascading_rollback
https://en.wikipedia.org/wiki/Database_trigger

Adriana WISE Wednesday, September 2, 2015

SQLite Download

The official SQLite website is sqlite.org. There are versions for Linux, Windows,
MacOS X.

SQLite Commands

SQLite Command Description

.backup ?DB?FILE Back-up DB (default “main”) to FILE

.databases List names and files of attached databases

.dump ?TABLE? Dump the database in SQL text format. If TABLE is
specified, only dump tables matching the pattern
TABLE

.exit Exit SQLite prompt

.header(s) ON|OFF Turn display of headers ON or OFF

.help Show dot commands

.indices ?TABLE? Show names of all indices. If TABLE is specified, only
show indices for tables matching the pattern TABLE

.log FILE|off Turn logging ON or OFF. FILE is either stderr or
stdout

.mode MODE Set output mode where MODE is one of:
csv—comma-separated values
column—left-aligned columns
html—HTML <TABLE> code
insert—SQL insert statements for TABLE
line—one value per line
list—values delimited by .separator string
tabs—tab-separated values
tcl—TCL list elements

.nullvalue STRING Print STRING in place of NULL values

.output FILENAME Send output to FILENAME

.output stdout Send output to stdout (terminal)

SQLite Command

�2

http://sqlite.org

Adriana WISE Wednesday, September 2, 2015

The following commands were issued for my database, students.db:

Adrianas-MBP-2:Scripts awise$ sqlite3 students.db
SQLite version 3.8.10.1 2015-05-09 12:14:55
Enter ".help" for usage hints.
sqlite> .databases
seq name file
--- --------------- --
0 main /Users/awise/Python/Scripts/students.db
sqlite> .schema Students
CREATE TABLE Students(ID INTEGER PRIMARY KEY, Name TEXT, Email
TEXT, Grade INT);
sqlite> .dbinfo
database page size: 4096
write format: 1
read format: 1
reserved bytes: 0
file change counter: 52
database page count: 7
freelist page count: 1
schema cookie: 41
schema format: 4

.print STRING… Print literal STRING

.quit Exit SQLite prompt

.read FILENAME Execute SQL in FILENAME

.schema ?TABLE? Show the CREATE statements. If TABLE is specified,
only show tables matching the pattern TABLE

.separator STRING Change separator used by the output mode
and .import to STRING

.show Show current values for all settings

.stats ON|OFF Turn stats ON or OFF

.tables ?PATTERN? List names of tables matching the pattern PATTERN

.width NUM NUM Set column widths for “column” mode

.timer ON|OFF Turn the CPU timer measurement ON or OFF

DescriptionSQLite Command

�3

Adriana WISE Wednesday, September 2, 2015

default cache size: 0
autovacuum top root: 0
incremental vacuum: 0
text encoding: 1 (utf8)
user version: 0
application id: 0
software version: 3008005
number of tables: 5
number of indexes: 0
number of triggers: 0
number of views: 0
schema size: 532
sqlite> .tables
ParticipatesIn Projects Situation Students
Week
sqlite> .fullschema
CREATE TABLE Students(ID INTEGER PRIMARY KEY, Name TEXT, Email
TEXT, Grade INT);
CREATE TABLE ParticipatesIn(StudentID INT, ProjectTitle TEXT,
FOREIGN KEY(StudentID) REFERENCES Students(ID));
CREATE TABLE Projects(Title TEXT, Grade INT, FOREIGN KEY(Title)
REFERENCES ParticipatesIn(ProjectTitle));
CREATE TABLE Situation(StudentID INT, WeekNo INT, FOREIGN
KEY(StudentID) REFERENCES Students(ID), FOREIGN KEY(WeekNo)
REFERENCES Week(Number));
CREATE TABLE Week(WeekNo INTEGER PRIMARY KEY, PDF INT,
WrittenReport INT, Attended INT, Grade INT);
/* No STAT tables available */

To format output in column format, the following commands can be issued:

sqlite> .header on
sqlite> .mode column
sqlite> .timer on
sqlite> SELECT * FROM Students;
Run Time: real 0.000 user 0.000071 sys 0.000003
sqlite> SELECT * FROM Students;
ID Name Email Grade
---------- ---------- ------------------ ----------
1 Jeahun AN hsjaehun@gmail.com 100
2 Qendrim Gj qgjevukaj@gmail.co 100
3 William Wi william.widmer15@m 100
4 Yan Zhen L yanznln@gmail.com 100
5 Richard Hu richard77927@hotma 100
6 Katherine katherine.sullivan 100

�4

Adriana WISE Wednesday, September 2, 2015

7 Shehryar K shehryar2212@yahoo 100
8 Fazlay Rab fazlay.rabbi35@myh 100
9 Saad Makhd saad.makhdumi38@my 100
10 Peter Lena peter.lenahan84@my 100
11 Manpreet K mka0019@gmail.com 100
12 Brandon Sh brandon.shoykhet24 100
13 Carlos Rod rodriguezCA@gmail. 100
14 Oscar Tong tong.oscar@gmail.c 100
15 Damian Gli glina126@gmail.com 100
Run Time: real 0.000 user 0.000183 sys 0.000090
sqlite>

Create Database

Adrianas-MBP-2:Scripts awise$ sqlite3 testDB.db
SQLite version 3.8.10.1 2015-05-09 12:14:55
Enter ".help" for usage hints.
sqlite> .databases
seq name file
--- -------- -------------------------------------
0 main /Users/awise/Python/Scripts/testDB.db
sqlite>

Attach and Detach Database

The ATTACH command selects a particular database from multiple databases.
After this, all SQLite statements will be executed for the attached database.

Syntax:

ATTACH DATABASE 'DatabaseName' As ‘Alias-Name';

Example:

sqlite> ATTACH DATABASE 'testDB.db' AS 'TEST';
sqlite> .database
seq name file
--- --------------- ------------------------------------
0 main /Users/awise/Python/Scripts/testDB.db
2 TEST /Users/awise/Python/Scripts/testDB.db
sqlite>

�5

Adriana WISE Wednesday, September 2, 2015

The DETACH command dissociates a database from a database connection,
which was previously established with an ATTACH command.

Syntax:

sqlite> DETACH DATABASE ‘Alias-Name’;

Example:

sqlite> DETACH DATABASE 'TEST';
sqlite> .databases
seq name file
--- --------------- ------------------------------------
0 main /Users/awise/Python/Scripts/testDB.db

Create and Drop Table

The CREATE TABLE command will generate a table with a user-specified name
in the database, with a user-specified column structure (“schema”).

Syntax:

CREATE TABLE database_name.table_name(
 column1 datatype PRIMARY KEY(one or more columns),
 column2 datatype,
 column3 datatype,

 columnN datatype,
);

Example:

sqlite> CREATE TABLE Musicians(
 ...> Name TEXT NOT NULL,
 ...> Age INT NOT NULL,
 ...> Address CHAR(50),
 ...> Num_Albums INT
 ...>);
sqlite> CREATE TABLE MemberOf(

�6

Adriana WISE Wednesday, September 2, 2015

 ...> ID INT PRIMARY KEY NOT NULL,
 ...> Band CHAR(50) NOT NULL,
 ...> Musician_ID INT NOT NULL
 ...>);
sqlite> .tables
MemberOf Musicians
sqlite> .schema Musicians
CREATE TABLE Musicians(
Name TEXT NOT NULL,
Age INT NOT NULL,
Address CHAR(50),
Num_Albums INT
);
sqlite> .schema MemberOf
CREATE TABLE MemberOf(
ID INT PRIMARY KEY NOT NULL,
Band CHAR(50) NOT NULL,
Musician_ID INT NOT NULL
);

To delete a table from a database you use the DROP TABLE statement.

Syntax:

DROP TABLE database_name.table_name;

Example:

sqlite> DROP TABLE Musicians;
sqlite> .tables
MemberOf

The INSERT Query Statement

This statement is used to populate a table with values.

Syntax:

INSERT INTO TABLE_NAME (column1, column2, column3,…
columnN) VALUES (value1, value2, value3,…, valueN);

�7

Adriana WISE Wednesday, September 2, 2015

If adding values for all columns in the table, the column names need not be listed,
but the values must be supplied in the exact order of columns, as specified when
the table was created:

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,…
valueN);

Example:

sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums)
 ...> VALUES(1, 'Lyle PUENTE', 53, 'Crompond, NY', 6);
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums)
 ...> VALUES(2, 'Tyler JOSEPH', 26, 'Columbus, OH', 4);
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums)
 ...> VALUES(3, 'Josh DUN', 27, 'Columbus, OH', 3);

You can also use another table to populate a given table with data:

INSERT INTO first_table_name [(column1, column2, ...
columnN)]
 SELECT column1, column2, ...columnN
 FROM second_table_name
 [WHERE condition];

The SELECT Query Statement

This statement selects entries from a table or from multiple tables, based on a
criterion.

Syntax:

SELECT column1, column2,…, columnN FROM table_name;

SELECT * FROM table_name;

�8

Adriana WISE Wednesday, September 2, 2015

sqlite> .header on
sqlite> .mode column
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num_Albums
---------- ----------- ---------- ------------ ----------
1 Lyle PUENTE 53 Crompond, NY 6
2 Tyler JOSEP 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3
sqlite>

For selecting only a subset of fields from the table:

sqlite> SELECT ID, Name, Age FROM Musicians;
ID Name Age
---------- ----------- ----------
1 Lyle PUENTE 53
2 Tyler JOSEP 26
3 Josh DUN 27

To adjust the column width:

sqlite> .width 3 20 3 20 3
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num
--- -------------------- --- -------------------- ---
1 Lyle PUENTE 53 Crompond, NY 6
2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3

To list the tables in the database:

sqlite> .width 20
sqlite> SELECT tbl_name FROM sqlite_master WHERE type='table';
tbl_name

MemberOf
Musicians

Operators

To specify conditions in an SQLite statement, the following types of operators are
supported:

• arithmetic operators

�9

Adriana WISE Wednesday, September 2, 2015

• comparison operators
• logical operators
• bitwise operators

Arithmetic Operators

Comparison Operators

Arithmetic Operator Description

+ addition

- subtraction

* multiplication

/ division

% modulus

Comparison Operator Description

equal

equal

not equal

not equal

strictly greater than

strictly less than

greater than or equal to

less than or equal to

not greater than

not less than

�! =

�<

�! >

�=

�>

�<=

�==

�<>

�>=

�! <

�10

Adriana WISE Wednesday, September 2, 2015

Logical Operators

Expressions

There are three types of expressions:
• boolean
• numeric
• date

Boolean Expressions

These have the general syntax:

SELECT column1, column2,…, columnN

Logical Operator Description

AND logical AND

BETWEEN range of values

EXISTS checks for row in table

IN value IN list

NOT IN value NOT IN list

LIKE value LIKE wildcard-defined values

GLOB value like wild-card defined values, case-sensitive

NOT negate operator

OR logical OR

IS NULL compare value to NULL value

IS

IS NOT

|| concatenates two strings

UNIQUE searches unique rows

same as !=

same as !! =

�11

Adriana WISE Wednesday, September 2, 2015

FROM table_name
WHERE SINGLE VALUE MATCHING EXPRESSION;

Example:

sqlite> .width 3 20 3 20 3
sqlite> SELECT * FROM Musicians WHERE Age<=27;
ID Name Age Address Num
--- -------------------- --- -------------------- ---
2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3

Numeric Expressions

These allow SQL statements to be combined with mathematical expressions,
assigning values computed from a table to variables, and displaying the result. For
example, the values from a column could be added to create a grand total (the total
number of albums for all of our artists in the database).

Syntax:

SELECT numerical_expression as OPERATION_NAME
[FROM table_name WHERE CONDITION];

Example:

sqlite> .width 10
sqlite> SELECT count(*) AS Artists FROM Musicians;
Artists

3
sqlite> .width 15
sqlite> SELECT sum(Num_Albums) AS Total_Albums FROM Musicians;
Total_Albums

13
sqlite> SELECT avg(Age) AS Average_Age FROM Musicians;
Average_Age

35.333333333333

�12

Adriana WISE Wednesday, September 2, 2015

Date Expressions

These are used to extract current date information that can be used in other
database operations.

sqlite> .width 20
sqlite> SELECT CURRENT_TIMESTAMP;
CURRENT_TIMESTAMP

2015-09-01 19:57:18

Table Update and Delete Queries

Table updates are used to modify single field entries in a table row. For example, if
we wanted to modify the number of albums for an artist in our testDB.db
database, we would use an UPDATE statement.

Syntax:

UPDATE table_name
SET column1 = value1, column2 = value2,…, columnN =
valueN
WHERE [condition];

Example:

sqlite> UPDATE Musicians
 ...> SET Num_Albums=7
 ...> WHERE Name='Lyle PUENTE’;
sqlite> .width 3 20 3 20 3
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num
--- -------------------- --- -------------------- ---
1 Lyle PUENTE 53 Crompond, NY 7
2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3

The DELETE statement removes an entire row from a table, satisfying a condition:

DELETE FROM table_name

�13

Adriana WISE Wednesday, September 2, 2015

WHERE [condition];

The INSERT statement adds an entire row to the table:

INSERT INTO TABLE_NAME (column1, column2, column3,…,
columnN)
VALUES (value1, value2, value3,…valueN);

Example:

sqlite> INSERT INTO Musicians (ID, Name, Age, Address,
Num_Albums)
 ...> VALUES (4, 'Pointhead LARRY', 55, 'Los Angeles, CA', 0);
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num
--- -------------------- --- -------------------- ---
1 Lyle PUENTE 53 Crompond, NY 7
2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3
4 Pointhead LARRY 55 Los Angeles, CA 0

…And now, to remove it:

sqlite> DELETE FROM Musicians
 ...> WHERE ID=4;
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num
--- -------------------- --- -------------------- ---
1 Lyle PUENTE 53 Crompond, NY 7
2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3

Pattern Matching with LIKE and GLOB

To allow selection of records (table rows) based on imprecise (partial) data, the
SELECT statement can also work with pattern matching.

Syntax:

SELECT FROM table_name

�14

Adriana WISE Wednesday, September 2, 2015

WHERE column LIKE 'XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE 'XXXX_'

or

SELECT FROM table_name
WHERE column LIKE '_XXXX'

or

SELECT FROM table_name
WHERE column LIKE ‘_XXXX_'

The “%” wildcard allows any number of characters in its place, while the “_”
wildcard allows exactly one character in its place.

Example:

sqlite> SELECT * FROM Musicians
 ...> WHERE Name LIKE '_yle%';
ID Name Age Address Num
--- -------------------- --- -------------------- ---
1 Lyle PUENTE 53 Crompond, NY 7
2 Tyler JOSEPH 26 Columbus, OH 4

The GLOB pattern matching works the same way, with the difference that it is
case-sensitive.

�15

Adriana WISE Wednesday, September 2, 2015

The LIMIT Statement

This allows the display of only a limited number of rows from the table, with a
given offset.

Syntax:

SELECT column1, column2,…, columnN
FROM table_name
LIMIT [no of rows] OFFSET [row num]

Example:

sqlite> SELECT * FROM Musicians
 ...> LIMIT 2 OFFSET 1;
ID Name Age Address Num
--- -------------------- --- -------------------- ---
2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3

The ORDER, GROUP, and HAVING Statements

The ORDER BY statement allows the rearrangement of the table rows to sort
them according to an order on one of the fields. For instance, in our testDB.db,
we could rearrange the artists in increasing order of age.

Syntax:

SELECT column-list
FROM table_name
[WHERE condition]
[ORDER BY column1, column2, .. columnN] [ASC | DESC];

Example:

sqlite> SELECT * FROM Musicians
 ...> ORDER BY Age ASC;
ID Name Age Address Num
--- -------------------- --- -------------------- ---

�16

Adriana WISE Wednesday, September 2, 2015

2 Tyler JOSEPH 26 Columbus, OH 4
3 Josh DUN 27 Columbus, OH 3
1 Lyle PUENTE 53 Crompond, NY 7

The GROUP statement allows aggregation of data pertaining to rows from the
same group. For instance, in our testDB.db, Tyler JOSEPH and Josh DUN are
members of the same band, “Twenty One Pilots”. We could group them by that
criterion and sum their respective numbers of albums.

Syntax:

For this purpose, we need to add to the main table of our database, Musicians,
another field referencing the PK ID from the MemberOf table. We do this by
creating a FOREIGN KEY field called Band_ID. Since we’ve already created our
table, we need to:
1. drop the old Musicians table
2. re-create the schema, which should now include the foreign key
3. re-insert values for each row, to reference explicitly the ID for each band

These steps are shown below:

sqlite> DROP TABLE Musicians;
sqlite> DROP TABLE MemberOf;
sqlite> CREATE TABLE MemberOf(
 ...> ID INT PRIMARY KEY NOT NULL,
 ...> Band CHAR(50),
 ...> Since INT);
sqlite> INSERT INTO MemberOf(ID, Band, Since)
 ...> VALUES (1, 'My Brothers Banned', 1996);
sqlite> INSERT INTO MemberOf(ID, Band, Since)
 ...> VALUES (2, 'Twenty One Pilots', 2009);
sqlite> .width 3 20 4
sqlite> SELECT * FROM MemberOf;
ID Band Since
--- -------------------- ----
1 My Brothers Banned 1996
2 Twenty One Pilots 2009
sqlite> CREATE TABLE Musicians(
 ...> ID INT PRIMARY KEY NOT NULL,
 ...> Name CHAR(20),
 ...> Age INT,
 ...> Address CHAR(20),
 ...> Num_Albums INT,

�17

Adriana WISE Wednesday, September 2, 2015

 ...> Band_ID INT,
 ...> FOREIGN KEY(Band_ID) REFERENCES MemberOf(ID)
 ...>);
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums, Band_ID)
 ...> VALUES(1, 'Lyle PUENTE', 53, 'Crompond, NY', 6, 1);
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums, Band_ID)
 ...> VALUES(2, 'Tyler JOSEPH', 26, 'Columbus, OH', 4, 2);
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums, Band_ID)
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums, Band_ID)
 ...> VALUES(3, 'Josh DUN', 27, 'Columbus, OH', 3, 2);
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num
Band_ID
--- -------------------- ---- -------------------- --- ---
1 Lyle PUENTE 53 Crompond, NY 6 1
2 Tyler JOSEPH 26 Columbus, OH 4 2
3 Josh DUN 27 Columbus, OH 3 2

Now we’re ready to use the GROUP BY statement usefully, to aggregate the
number of albums from singers belonging to the same band:

sqlite> SELECT sum(Num_Albums) FROM Musicians
 ...> GROUP BY Band_ID
 ...> ORDER BY Age DESC;
sum

6
7
sqlite> .width 20 15
sqlite> SELECT Name, sum(Num_Albums) FROM Musicians
 ...> GROUP BY Band_ID
 ...> ORDER BY Age DESC;
Name sum(Num_Albums)
-------------------- ---------------
Lyle PUENTE 6
Josh DUN 7

If we further want to filter the results of the GROUP BY operation, and show only
those that satisfy a condition, we use the HAVING statement. So, after grouping
the musicians into bands, we want to know which group has more albums:

�18

Adriana WISE Wednesday, September 2, 2015

sqlite> SELECT Name, sum(Num_Albums) FROM Musicians
 ...> GROUP BY Band_ID
 ...> HAVING sum(Num_Albums)>6;
Name sum(Num_Albums)
-------------------- ---------------
Josh DUN 7

Constraints

Constraints enforce that field values obey user-specified limitations, such as non-
null fields, positive valued fields to avoid garbage data, uniqueness of field values
where repeats wouldn’t make sense, default values where field values are
unavailable but not essential.

The following table summarizes these constraints:

Joins

Joins allow the display of data from multiple tables to suit cross-reference purposes.
There are three types of joins:
1. CROSS JOIN—all the rows of Table 1, each one with all the rows of Table 2
2. INNER JOIN—a refinement of a CROSS JOIN on a condition, requiring a

match in Table 2 of a row satisfying that condition

Constraint Description

NOT NULL a column (field) cannot have a NULL value (usually the
PRIMARY KEY)

DEFAULT provides a default value when none specified (e.g. a
minimum of 1 album for each artist, otherwise they
wouldn’t be in the database!)

UNIQUE all column (field) values are different (no two rows can
have identical entries for a particular column, e.g. no
two bands can have the same name for registered
trademark purposes)

PRIMARY KEY unique for each row (across rows), since it is the identifier
of each row

CHECK column (field) values satisfy a certain condition (e.g. the
Age cannot be <0)

�19

Adriana WISE Wednesday, September 2, 2015

3. OUTER JOIN:
LEFT OUTER JOIN: all rows of Table 1, even though there are no
matches in Table 2 satisfying the condition (e.g. a solo artist, no band)
RIGHT OUTER JOIN: all rows of Table 2, even though there are no
matches Table 1 satisfying the condition

Example CROSS JOIN:

sqlite> .width 3 20 30
sqlite> SELECT Musicians.ID, Name, Band FROM
 ...> Musicians CROSS JOIN MemberOf;
ID Name Band
--- -------------------- ------------------------------
1 Lyle PUENTE My Brothers Banned
1 Lyle PUENTE Twenty One Pilots
2 Tyler JOSEPH My Brothers Banned
2 Tyler JOSEPH Twenty One Pilots
3 Josh DUN My Brothers Banned
3 Josh DUN Twenty One Pilots

Example INNER JOIN:

sqlite> SELECT Musicians.ID, Name, Band FROM
 ...> Musicians INNER JOIN MemberOf
 ...> ON Musicians.Band_ID=MemberOf.ID;
ID Name Band
--- -------------------- ------------------------------
1 Lyle PUENTE My Brothers Banned
2 Tyler JOSEPH Twenty One Pilots
3 Josh DUN Twenty One Pilots

Example LEFT OUTER JOIN:

For this example, we would need to create an entry in the Musicians table
containing a solo artist, belonging to no band. We do this with INSERT:

sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums)
 ...> VALUES(4, 'Sara Bareilles', 35, 'Eureka, CA', 2);
sqlite> .width 3 20 3 15 3 7
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num Band_ID
--- -------------------- --- --------------- --- -------
1 Lyle PUENTE 53 Crompond, NY 6 1

�20

Adriana WISE Wednesday, September 2, 2015

2 Tyler JOSEPH 26 Columbus, OH 4 2
3 Josh DUN 27 Columbus, OH 3 2
4 Sara Bareilles 35 Eureka, CA 2

An INNER JOIN would render only those artists for whom there are entries in the
MemberOf table:

sqlite> .width 3 15 17
sqlite> SELECT Musicians.ID, Name, Band FROM
 ...> Musicians INNER JOIN MemberOf
 ...> ON Musicians.Band_ID=MemberOf.ID;
ID Name Band
--- --------------- -----------------
1 Lyle PUENTE My Brothers Banned
2 Tyler JOSEPH Twenty One Pilots
3 Josh DUN Twenty One Pilots

However, a LEFT OUTER JOIN would also include Sara Bareilles, who is a solo
artist (for whom there is no entry in table MemberOf):

sqlite> SELECT Musicians.ID, Name, Band FROM
 ...> Musicians LEFT OUTER JOIN MemberOf
 ...> ON Musicians.Band_ID=MemberOf.ID;
ID Name Band
--- --------------- -----------------
1 Lyle PUENTE My Brothers Banned
2 Tyler JOSEPH Twenty One Pilots
3 Josh DUN Twenty One Pilots
4 Sara Bareilles

Now…, why do we even need a CROSS JOIN?! In trying to answer this question,
we need to add three more tables, Albums, Stores, and Sales. By coding a
CROSS JOIN of Albums with Stores, we can generate all (Album, Store)
combinations. Now, if table Sales has columns Album, Store, Num_Sold, we
can take the LEFT OUTER JOIN of the CROSS JOIN with Sales, to show all
the sales per album and store, including the 0 sales, which a GROUP BY Store in
the Sales table wouldn’t show.

Unions

A UNION statement will combine the results of two or more SELECT statements
from different tables without duplicates. For example, if we had two different tables

�21

Adriana WISE Wednesday, September 2, 2015

in our database, one for musicians who are part of a band, and one for solo artists,
a UNION statement would be able to merge the two tables without duplicates. For
instance, Tyler JOSEPH has a solo album as well, so he’d be part of both tables.

Syntax:

SELECT column1 [, column2]
FROM table1 [, table2]
[WHERE condition]

UNION

SELECT column1 [, column2]
FROM table1 [, table2]
[WHERE condition]

Example:

sqlite> CREATE TABLE SoloArtists(ID INT PRIMARY KEY NOT NULL,
 ...> Name CHAR(20),
 ...> Age INT,
 ...> Address CHAR(20),
 ...> Num_Albums INT,
 ...> Band_ID INT,
 ...> FOREIGN KEY(Band_ID) REFERENCES MemberOf(ID)
 ...>);
sqlite> INSERT INTO SoloArtists(ID, Name, Age, Address,
Num_Albums, Band_ID)
 ...> VALUES(1, 'Lyle PUENTE', 53, 'Crompond, NY', 2, 1);
sqlite> INSERT INTO SoloArtists(ID, Name, Age, Address,
Num_Albums, Band_ID)
 ...> VALUES(2, 'Tyler JOSEPH', 26, 'Columbus, OH', 1, 2);
sqlite> INSERT INTO SoloArtists(ID, Name, Age, Address,
Num_Albums)
 ...> VALUES(3, 'Sara BAREILLES', 35, 'Eureka, CA', 2);
sqlite> SELECT * FROM SoloArtists;
ID Name Age Address Num
Band_ID
--- --------------- ----------------- --------------- ---

1 Lyle PUENTE 53 Crompond, NY 2 1
2 Tyler JOSEPH 26 Columbus, OH 1 2

�22

Adriana WISE Wednesday, September 2, 2015

3 Sara BAREILLES 35 Eureka, CA 2

Now we want to show that the UNION of tables Musicians and
SoloArtists will yield a listing of all artists, without duplicates.

sqlite> SELECT ID, Name, Age FROM Musicians
 ...> UNION
 ...> SELECT ID, Name, Age FROM SoloArtists;
ID Name Age
--- --------------- -----------------
1 Lyle PUENTE 53
2 Tyler JOSEPH 26
3 Josh DUN 27
3 Sara BAREILLES 35
4 Sara BAREILLES 35

Oops! What happened? We selected a column (field) with unique values, and since
Sara BAREILLES appears with different IDs in each table, the rows were listed in
the UNION as distinct.

But if we omit the ID in the SELECT statement, we get only de-duplicated rows:

sqlite> .width 20 3
sqlite> SELECT Name, Age FROM Musicians
 ...> UNION
 ...> SELECT Name, Age FROM SoloArtists;
Name Age
-------------------- ---
Josh DUN 27
Lyle PUENTE 53
Sara BAREILLES 35
Tyler JOSEPH 26

Triggers

The TRIGGER command creates events based on database operations. For
instance, we could log each new insertion into table Musicians and save that
into a new table, which we will name Logs.

Syntax:

CREATE TRIGGER trigger_name [BEFORE|AFTER] event_name

�23

Adriana WISE Wednesday, September 2, 2015

ON table_name
BEGIN
 -- Trigger logic goes here....
END;

Example:

sqlite> CREATE TRIGGER audit AFTER INSERT
 ...> ON Musicians
 ...> BEGIN
 ...> INSERT INTO Logs(ID, Date)
 ...> VALUES(new.ID, datetime('now'))
 ...> ;
 ...> END;
Run Time: real 0.004 user 0.000310 sys 0.000834
sqlite> INSERT INTO Musicians(ID, Name, Age, Address,
Num_Albums)
 ...> VALUES(5, 'Robin THICKE', 35, 'Los Angeles, CA', 1);
Run Time: real 0.003 user 0.000193 sys 0.000879
sqlite> SELECT * FROM Musicians;
ID Name Age Address Num_Albums
Band_ID
---------- ----------- ---------- ------------ ----------

1 Lyle PUENTE 53 Crompond, NY 6 1
2 Tyler JOSEP 26 Columbus, OH 4 2
3 Josh DUN 27 Columbus, OH 3 2
4 Sara BAREIL 35 Eureka, CA 2
5 Robin THICK 35 Los Angeles, 1
Run Time: real 0.001 user 0.000151 sys 0.000081
sqlite> SELECT * FROM Logs;
ID Date
---------- -------------------
5 2015-09-02 14:05:51
Run Time: real 0.000 user 0.000100 sys 0.000043

�24

