
Adriana WISE Wednesday, October 14, 2015

Tkinter (Part One)
Tk is a GUI extension developed for Tcl, a scripting language. Because it became
very popular in the 1990s, and many programmers wanted to use it outside the
scripting language it had been developed for, ports for various other languages were
developed, such as TASH (for Ada), Tkinter (for Pascal), and others for Perl, Ruby,
and Common Lisp.

The Hello, Tkinter! Widget

One of the simplest Tkinter widgets is the label. A label is a Tkinter Widget class,
which can display text or an image, and can be viewed, but is not interactive. The
following example implements this widget:

#!/usr/bin/python

from Tkinter import *

root=Tk()

myString="Hello, Tkinter!\n"+"Tkinter is a port\n"+"for the GUI
toolkit Tk,\n"+"developed for Python."
widget=Label(root, text=myString)
widget.pack()

root.mainloop()

This produces the following widget:

The root is the Tk root widget, a window with a title bar, provided by the
window manager. The root widget must be created before any other widgets, and
there can only be one root widget. The second widget is the Label widget,
generated with a call to the constructor to the class Label, which takes two args:

�1

Adriana WISE Wednesday, October 14, 2015

the parent window—in this case root
the text to show—in this case, the string myString

Finally, the pack() method sizes the window to the minimum available size that
still fits the text provided. The call to the mainloop() method of object root will
generate the event loop that keeps the window open as long as the user doesn’t
close it.

Tkinter Widgets

Our simple Hello, Tkinter! widget is only one example of the many such interfaces
available from Tkinter. Tkinter produces several graphical controls to be used for
applications written for the windowing type of graphical interface. These are
summarized in the following table:

Graphical Control Behavior

Button The Button widget displays a button in the application.

Canvas The Canvas widget draws shapes (lines, ovals, rectangles)
in the application.

Checkbutton The Checkbutton widget allows the selection of options
through checkboxes. The user may select multiple options
at the same time.

Entry The Entry widget displays a single line textfield which
accepts input text values from the user.

Frame The Frame widget is used as a container for organizing
other widgets.

Label The Label widget produces a single line caption for other
widgets. It can also contain images.

Listbox The Listbox widgets produces a list of options, of which
the user can select one.

Menubutton The Menubutton widget displays menus in the
application.

Menu The Menu widget provides the menus inside the
Menubutton widget.

Graphical Control

�2

Adriana WISE Wednesday, October 14, 2015

The Label Widget

We used the label widget in our previous simples Tkinter example. In the following
example, we will add an image to the label:

#!/usr/bin/python

from Tkinter import *

root=Tk()

Message The Message widget produces multiline text fields for
accepting user input values.

Radiobutton The Radiobutton widget produces multiple options as
radio buttons. Unlike the Checkbutton widget, the
Radiobutton only allows the selection of a single option.

Scale The Scale widget provides a slider to scale things.

Scrollbar The Scrollbar widget adds scrolling capability to widgets,
such as to list boxes.

Text The Text widget produces text on multiple lines.

Toplevel The Toplevel widget provides a separate window
container.

Spinbox The Spinbox widget is a variant of the Tkinter Entry
widget, which can be used to select from a fixed number
of values.

PanedWindow The PanedWindow widget is a container widget which
may contain a number of panes, arranged horizontally or
vertically.

LabelFrame The LabelFrame widget is a container widget, whose
purpose is to act as a spacer or container for complex
window layouts.

txMessageBox The txMessageBox widget displays message boxes in
applications.

BehaviorGraphical Control

�3

Adriana WISE Wednesday, October 14, 2015

logo=PhotoImage(file="/Users/awise/Python/Tkinter/images/
python.gif")
w1=Label(root, image=logo).pack(side="right")
explanation="""At present, only GIF and PPM/PGM
formats are supported, but an interface
exists to allow additional image file
formats to be added easily."""
w2=Label(root, justify=LEFT, padx = 10,
text=explanation).pack(side="left")
root.mainloop()

In this code, there are two Label widgets, w1 and w2, one image, one text. The
output is shown below:

The syntax for the Label widget is as follows:

w=Label(master, option, …)

where the arguments are:
master—the parent window
options—one of the options listed in the following table:

Option Description

anchor Controls where the text is positioned if the widget (Label) has
more space than the text needs. The default is
anchor=CENTER

Option

�4

Adriana WISE Wednesday, October 14, 2015

bg The background color displayed behind the label .

bitmap If this option is set to a bitmap or an image file, the label will
display it.

bd The size of the border around the indicator. The default is 2
pixels.

cursor If this option is set to a cursor name (arrow, dot etc.), the
mouse cursor will change to that pattern when it goes over
the check button.

font If text is displayed in the label (with the text or the
textvariable option), this option sets the font for it.

fg If text is displayed in the label (with the text or the
textvariable option), this option sets the color for it.

height The vertical dimension of the new frame.

image This option sets the image to be displayed.

justify Sets the justification of text. The options are: CENTER,
LEFT, or RIGHT. The default it CENTER.

padx Allows horizontal padding around the text within the label
widget. The default is 1 space.

pady Allows vertical padding around the text within the label
widget. The default is 1 space.

relief The decorative border around the label. The default is FLAT.

text This option is set to the text string to be displayed by the
label, if the label displays static (hardcoded) text.

textvariable This option is set to the text string to be displayed by the
label, if the label displays dynamic (sourced from a variable)
text.

underline Displays an underline between the 0th and nth character
positions within the text. The default is -1, meaning no
underline.

DescriptionOption

�5

Adriana WISE Wednesday, October 14, 2015

Another option not specified in this table is compound. We can use this to display
both text and image within the same Label, to create an overlapping effect:

from Tkinter import *

root=Tk()
logo=PhotoImage(file="/Users/awise/Python/Tkinter/images/
python.gif")
explanation="This text is set in Baskerville, size 24, bold
face. This is my favorite font. I use it in all of my lectures."
w=Label(root,
 compound=CENTER,
 text=explanation,
 font='Baskerville 24 bold',
 fg='purple',
 wraplength=300,
 image=logo).pack(side="right")

root.mainloop()

The text fonts can be specified either in system-supplied available fonts (e.g. Times,
Courier, Helvetica, Baskerville etc.), or in a structured format (e.g. TkDefaultFont,
TkTextFont, TkFixedFont, TkMenuFont, TkHeadingFont etc.). There are online
references with available fonts for various systems.

The code above produces the following application window with a label widget:

width The width of the label in # of characters. If not set, the
widget will be sized to fit its contents (text+images).

wraplength The max limit of # of characters per line.

DescriptionOption

�6

Adriana WISE Wednesday, October 14, 2015

The Button Widget

The Button widget can be associated with some action, which should be executed
when the button is pressed. The action is specified as a Python function or method.

The following simple example creates two buttons, one of which, when pressed,
displays a message on the command line, and the other quits the window:

#!/usr/bin/python

from Tkinter import *

class App:
 def __init__(self, master):
 frame=Frame(master)
 frame.pack()
 self.button=Button(frame,
 text="QUIT",
 fg="red",
 command=frame.quit)
 self.button.pack(side=LEFT)
 self.slogan=Button(frame,
 text="My name",
 command=self.write_slogan())
 self.slogan.pack(side=LEFT)
 def write_slogan(self):
 print "My name is Adriana WISE."

root=Tk()
root.title("What's my name?")
app=App(root)
root.mainloop()

Class App is instantiated with one argument, master, which gets passed in as
root (the root window) when the class constructor is called to create the object
app. The Frame constructor instantiates the object frame, which organizes the
two Button widgets within the parent (root) window with the pack() method.

This outputs the following window:

�7

Adriana WISE Wednesday, October 14, 2015

When clicked, the QUIT button quits the window, by having its attribute
command set to frame.quit, while the “My name" button prints the slogan at
the command line. The root window is set to display the title “What’s my name?”.

We want to make the button “My name” start a new window instead of writing to
the command line, since this is what we would like a button to do in most
applications.

!/usr/bin/python

from Tkinter import *

class App:
 def __init__(self, master):
 frame=Frame(master)
 frame.pack()
 self.title="Adriana"
 self.button=Button(frame,
 text="QUIT",
 fg="red",
 command=frame.quit)
 self.button.pack(side=LEFT)
 self.slogan=Button(frame,
 text="My name",
 command=create_window)
 self.slogan.pack(side=LEFT)

def create_window():
 window=Toplevel(root)
 logo=PhotoImage(file="/Users/awise/Python/Tkinter/
images/python.gif")
 explanation="My name is Adriana WISE."
 widget=Label(window,
 compound=CENTER,
 text=explanation,
 font='Baskerville 24 bold',
 fg='purple',
 wraplength=300,
 image=logo).pack(side=“right")

widget.logo=logo

root=Tk()
root.title("What's my name?")
app=App(root)
root.mainloop()

�8

Adriana WISE Wednesday, October 14, 2015

The output using this code is a root window with the two buttons, and a next level
window containing the label widget and the text we want to display:

The syntax for the Button widget is:

widget=Button(master, option=value, …)

where:
	 master—parent window (window containing the button)
	 option—one of the following:

Option Description

activebackground Background button color when the mouse is rolled over
it.

activeforeground Foreground button color when the mouse is rolled over
it.

bd Border width in pixels. Default is 2.

bg Passive background color (when mouse is away from
button).

font Text font for the button.

Option

�9

Adriana WISE Wednesday, October 14, 2015

Variable Classes

Data entry widgets (text boxes, radio buttons, drop down lists) can be connected
directly to application variables by using one of the following options to these
widgets:
• variable
• textvariable
• onvalue
• offvalue
• value

height Height of the button in text lines (for text labels) and in
pixels (for image labels).

highlightcolor The color of the highlight when the widget is in focus.

image Image to be displayed as button label (instead of text).

justify Justifies multiple text lines on the button. Choices are
LEFT, CENTER, and RIGHT.

padx Padding left and right of the text label.

pady Padding above and below the text label.

relief Type of the border. Choices are SUNKEN, RAISED,
GROOVE, and RIDGE.

state State of the button. Choices are DISABLED (grayed
out), ACTIVE (mouse rolls over it), and NORMAL
(default).

underline Displays button label underlined between the specified
character positions. Default is -1 (no underline).

width Width of the button in # of characters (if label is text),
or in # of pixels (if label is image).

wraplength Sets the width in characters that the text lines for the
button label should wrap around.

DescriptionOption

�10

Adriana WISE Wednesday, October 14, 2015

Variables whose values can be passed from the Tkinter GUI to the backend script
of the application have to be subclassed from a class called Variable, defined in
the Tkinter module, and thus available to your script through the import
Tkinter statement. These variables are declared as shown in the following table:

To read the value of a variable set through a data entry widget, you call the
method get(). To set the value of such a variable, call the method set().

These variable classes were introduced at this point (without examples yet), in order
to prepare the terrain for data entry widgets, which follow next.

 The Radiobutton Widget

The Radiobutton Widget is used to accept an option from a list of options, similar
to the way you would check a text box on a paper form. In the following example,
we select one out of three musician names and capture the value into the value
option of the Radiobutton object. This value is then provided to the function
create_window(), in order to personalize the target pop-up window to the
musician name that was chosen:

from Tkinter import *

root=Tk()
v=StringVar()

def create_window():
 window=Toplevel(root)
 logo=PhotoImage(file="/Users/awise/Python/Tkinter/
images/python.gif")
 whichsinger=v.get()
 explanation="My name is %s" % whichsinger
 widget=Label(window,

Variable Objects Description

x=StringVar() Holds a string. Defaults to NULL.

x=IntVar() Holds an integer. Defaults to 0.

x=DoubleVar() Holds a float. Defaults to 0.0.

x=BooleanVar() Holds a Boolean. Defaults to 0 or FALSE.

�11

Adriana WISE Wednesday, October 14, 2015

 compound = CENTER,
 text=explanation,
 font='Baskerville 24 bold',
 fg='purple',
 wraplength=300,
 image=logo).pack(side="right")
 window.logo=logo

Label(root,
 text="""Choose a musician:""",
 justify=LEFT,
 padx=20).pack()
button1=Radiobutton(root,
 text="Lyle PUENTE",
 padx=20,
 variable=v,
 value="Lyle PUENTE",
 command=create_window).pack(anchor=W)
button2=Radiobutton(root,
 text="Tyler JOSEPH",
 padx=20,
 variable=v,
 value="Tyler JOSEPH",
 command=create_window).pack(anchor=W)
button3=Radiobutton(root,
 text="Josh DUN",
 padx=20,
 variable=v,
 value="Josh DUN",
 command=create_window).pack(anchor=W)

mainloop()

This produces the following windows:

�12

Adriana WISE Wednesday, October 14, 2015

The following table shows the options and their descriptions for the Radiobutton
widget:

Option Description

activebackground Background color when the mouse is rolled over
the radiobutton.

activeforeground Foreground color when the mouse is rolled over
the radiobutton.

anchor If the space available is larger than the widget, this
option specifies where the radiobutton is placed
within that space. The default is CENTER.

bg The normal (not under the mouse) background
color behind the indicator and the label.

bitmap Allows the display of a monochrome image on a
radiobutton, if this option is set to a bitmap file.

borderwidth Size of the border around the indicator. Default is
2 pixels.

command The function called when the radiobutton is
selected.

cursor Changes the appearance of the mouse cursor
when over the radiobutton (e.g. arrow, dot).

font The font used for the text.

fg The color used to render the text.

height The height (in text rows, not pixels) of text around
the radiobutton. Default is 1.

highlightbackground The color of the focus highlight when the
radiobutton is NOT in focus.

highlightcolor The color of the focus highlight when the
radiobutton IS in focus.

image If set to an image file, displays an image, instead of
text, for the radiobutton.

Option

�13

Adriana WISE Wednesday, October 14, 2015

justify Justifies text, when multiline, around the
radiobutton. Option values are CENTER (default),
LEFT, or RIGHT.

padx Horizontal padding around the radiobutton.
Default is 1 pixel.

pady Vertical padding around the radiobutton. Default
is 1 pixel.

relief Appearance of the decorative border around the
label. Default is FLAT.

selectcolor The color of the radiobutton when set. Default is
red.

selectimage If the radiobutton is used to show an image option,
not text (by using the image option), this option
specifies the image that the first one will change
into, after the radiobutton was pressed.

state One of three values: NORMAL (out of focus),
DISABLED (grayed out), and ACTIVE (when in
focus).

text The text label displayed as a user choice next to
the radiobutton. Multiple lines of text can be
“\n”-separated.

textvariable The variable that will hold the string value of the
radiobutton label and pass it to a control variable
of class StringVar for further usage.

underline Will display an underline between specified
character locations of the label text. The default is
-1, meaning no underline.

value The value of the radiobutton variable that
effectively allows the user selection to be passed on
to the controlling function and outside the Tkinter
script to a backend data processing script.

DescriptionOption

�14

Adriana WISE Wednesday, October 14, 2015

A radiobutton also has the following methods:

The Checkbox Widget

This widget is similar in functionality to, but differs in aspect from, the radiobutton.
In the following example we render the same functionality in selecting one of three
musicians, using checkboxes instead:

from Tkinter import *

root=Tk()
var1=IntVar()
var2=IntVar()
var3=IntVar()

def create_window():
 window=Toplevel(root)
 logo=PhotoImage(file="/Users/awise/Python/Tkinter/
images/python.gif")

variable The variable whose value is passed to the
controlling function. It can be either an IntVar
or a StringVar.

width Width of the label in characters (not pixels). The
default is the size that fits the contents.

wraplength The max # of characters on a line, if text label is
multiline.

DescriptionOption

Method Description

deselect() Clears (checks off) the radiobutton.

flash() Flashes the radiobutton a few times between its active and
normal colors, leaving it the way it started.

invoke() This method can be called to invoke the same actions as if the
radiobutton was selected.

select() Sets (checks on) the radiobutton.

�15

Adriana WISE Wednesday, October 14, 2015

 whichsinger={0: "Lyle PUENTE", 1: "Tyler JOSEPH", 2:
"Josh DUN"}
 if var1.get()==1:
 explanation="My name is %s" % whichsinger[0]
 elif var2.get()==1:
 explanation="My name is %s" % whichsinger[1]
 elif var3.get()==1:
 explanation="My name is %s" % whichsinger[2]
 widget=Label(window,
 compound = CENTER,
 text=explanation,
 font='Baskerville 24 bold',
 fg='purple',
 wraplength=300,
 image=logo).pack(side="right")
 window.logo=logo

Label(root,
 text="""Choose a musician:""",
 justify=LEFT,
 padx=20).grid(row=0, sticky=W)
checkbox1=Checkbutton(root,
 text="Lyle PUENTE",
 padx=20,
 variable=var1,
 command=create_window).grid(row=1, sticky=W)
checkbox2=Checkbutton(root,
 text="Tyler JOSEPH",
 padx=20,
 variable=var2,
 command=create_window).grid(row=2, sticky=W)
checkbox3=Checkbutton(root,
 text="Josh DUN",
 padx=20,
 variable=var3,
 command=create_window).grid(row=3, sticky=W)

mainloop()

The main difference between the Checkbutton and Radiobutton widget is that,
while the Radiobutton carries a value for the variable option, allowing string
values to be passed to the controlling (the command) function, the Checkbutton
DOES NOT. This means that there are only two possible values passed to the
command function, 1 if that option was checked, and 0 if it wasn’t. It is up to the
function, then, to take appropriate action in either case. This makes the

�16

Adriana WISE Wednesday, October 14, 2015

Checkbutton unsuitable for long lists of options, because of how long the code to
handle the values associated with each possible option has to be in the command
function.

The output of this code is:

The checkbutton syntax is:

widget=Checkbutton(master, option, …)

where:
master—the parent window
option—one of multiple possible options (not included here, very similar to the
Radiobutton)

Text Box (“Entry”) Widgets

The Entry widget allows the user to enter a single line of text. If the string is longer
than the box width in number of characters, the contents will be scrolled, which
means that the string contents will not be visible in its entirety at any given time.

The following example uses the Entry widget to provide the musician name for our
Musicians application. In its first implementation, the script will provide just the
entry window with the appropriate text boxes. In the second implementation, we
will use the data entered in the text box to provide contents to a variable whose
value will be displayed in the new window.

�17

Adriana WISE Wednesday, October 14, 2015

from Tkinter import *

master=Tk()

Label(master, text="First Name").grid(row=0)
Label(master, text="Last Name").grid(row=1)

e1=Entry(master)
e2=Entry(master)

e1.grid(row=0, column=1)
e2.grid(row=1, column=1)

mainloop()

The output is:

Now we want to add the capability to submit this form and capture the input for
display in another window:

from Tkinter import *

root=Tk()

def create_window():
 window=Toplevel(root)
 logo=PhotoImage(file="/Users/awise/Python/Tkinter/
images/python.gif")
 firstName=entry1.get()
 lastName=entry2.get()
 explanation="My name is %s %s" % (firstName, lastName)
 widget=Label(window,
 compound = CENTER,
 text=explanation,
 font='Baskerville 24 bold',
 fg='purple',
 wraplength=300,
 image=logo).pack(side="right")
 window.logo=logo

�18

Adriana WISE Wednesday, October 14, 2015

Label(root, text="First Name").grid(row=0)
Label(root, text="Last Name").grid(row=1)

entry1=Entry(root)
entry2=Entry(root)

entry1.grid(row=0, column=1)
entry2.grid(row=1, column=1)

Button(root,
 text='Submit',
 command=create_window).grid(row=3, column=1, sticky=W,
pady=4)

mainloop()

The output is:

The syntax of the Entry widget is:

widget=Entry(master, option, ...)

where:
master—the parent window
option—an option from a list of options, not presented here.

�19

Adriana WISE Wednesday, October 14, 2015

The Canvas Widget

The Canvas widget allows graphics to be displayed inside of a Tkinter window.
These graphics can be:
• pre-defined shapes, which can be specified by coordinates (line, circle, oval,

rectangle etc.)
• free-hand drawings
• graphs and plots

The following example code (borrowed from python-course.eu) allows free-hand
drawing:

from Tkinter import *

canvas_width=500
canvas_height=150

def paint(event):
 python_green="#476042"
 x1, y1=(event.x-1), (event.y-1)
 x2, y2=(event.x+1), (event.y+1)
 widget.create_oval(x1, y1, x2, y2, fill=python_green)

root=Tk()
root.title("Painting using Ovals")
widget=Canvas(root,
 width=canvas_width,
 height=canvas_height)
widget.pack(expand=YES, fill=BOTH)
widget.bind("<B1-Motion>", paint)

message=Label(root, text="Press and Drag the mouse to draw")
message.pack(side=BOTTOM)

mainloop()

The key to this code is the widget.bind() statement, which is an advance
introduction into the topic of Events and Binds. In short, a keyboard or mouse
event can be associated with a function (in this case, “<B1-Motion>”,
representing motion with the left mouse button pressed down, is associated with the
function paint(), which allows the user to create tiny ovals (the dots representing
the image), one at a time.

�20

http://python-course.eu

Adriana WISE Wednesday, October 14, 2015

Here’s what my daughter, Rosanna, painted with it:

The syntax for declaring a Canvas widget object is:

 widget=Canvas(master, option=value, ...)

where:
master—the parent window
option—again, one of the many in the following table…

Option Description

bd Border width in pixels. Default is 2.

bg Background color when passive.

confine If TRUE, the canvas cannot be scrolled outside of the
scroll region. This is the default.

cursor One of: arrow, circle, dot etc.

height The y size of the canvas.

highlightcolor Background color when active (when in focus).

relief Type of border: SUNKEN, RAISED, GROOVE,
RIDGE.

Option

�21

Adriana WISE Wednesday, October 14, 2015

The Text Widget

This widget is used to display multiple lines of text, which can also be made
scrollable. Text widgets can also be used in forms, as text editors, or even web
browsers. The can also display links, images, and CSS/HTML.

The following is a simple example of a Text widget showing song lyrics for one of
our 21 Pilots song, long enough to need scroll bars:

from Tkinter import *

root=Tk()
root.title("21 Pilots")

text1=Text(root, height=20, width=35)
photo=PhotoImage(file='/Users/awise/Python/Tkinter/images/
python.gif')
text1.insert(END,'\n')
text1.image_create(END, image=photo)

text1.pack(side=LEFT)

text2=Text(root, height=20, width=50)
scroll=Scrollbar(root, command=text2.yview)
text2.configure(yscrollcommand=scroll.set)

scrollregion A tuple (w, n, e, s) defining how large an area
of the canvas can be scrolled, with the 4 elements of
the tuple being west, north, east, south.

width The x size of the canvas.

xscrollincrement Scroll increment size, if this option is set to a positive
value. A scroll unit will be added, for instance, when the
user clicks on the bottom arrow of the scroll bar.

xscrollcommand If canvas is scrollable, this option should be the set()
method of the horizontal scrollbar.

yscrollincrement Same as xscrollincrement, but in the y direction.

yscrollcommand Same as xscrollcommand, but in the y direction.

DescriptionOption

�22

Adriana WISE Wednesday, October 14, 2015

text2.tag_configure('bold_italics', font=('Baskerville', 12,
'bold', 'italic'))
text2.tag_configure('big', font=('Baskerville', 20, 'bold'))
#476042
text2.tag_configure('color', foreground='purple',
 font=('Baskerville', 12, 'bold'))
text2.tag_bind('follow', '<1>', lambda e, t=text2: t.insert(END,
"Not now, maybe later!"))
text2.insert(END,'\nMigraine\n', 'big')
quote = """
Am I the only one I know
Waging my wars behind my face and above my throat.
Shadows will scream that I'm alone.

I-I-I I've got a migraine.
And my pain will range from up, down, and sideways.
Thank God it's Friday cause Fridays will always be better than
Sundays
'Cause Sundays are my suicide days.

I don't know why they always seem so dismal.
Thunderstorms, clouds, snow and a slight drizzle.
Whether it's the weather or the ledges by my bed
Sometimes death seems better than the migraine in my head.
Let it be said what the headache represents
It's me defending in suspense
It's me suspended in a defenseless test
Being tested by a ruthless examiner
That's represented best by my depressing thoughts.

Am I the only one I know,
Waging my wars behind my face and above my throat.
Shadows will scream that I'm alone.
But I know, we've made it this far, kid.

Made it this far
Made it this fa
"""
text2.insert(END, quote, 'color')
text2.insert(END, 'follow-up\n', 'follow')
text2.pack(side=LEFT)
scroll.pack(side=RIGHT, fill=Y)

root.mainloop()

This outputs the following Tkinter window:

�23

Adriana WISE Wednesday, October 14, 2015

The syntax of the Text widget is:

widget=Text(master, option, ...)

The options are listed in the following table:

Option Description

bg The background color when passive.

bd Width of the border around the text widget.
Default is 2 pixels.

cursor Shape of the cursor when the mouse is over the
Text widget.

exportselection If text is selected within the Text widget, if this
option is set to 1, it will go on the clipboard of the
window manager. To changes this behavior, set this
option to 1.

font The default font text in the Text widget.

Option

�24

Adriana WISE Wednesday, October 14, 2015

fg Foreground (text) color.

height Height of the widget in # of text lines.

highlightbackground Color of the background when widget is in focus.

highlightcolor Color of the foreground (text) when widget is in
focus.

highlightthickness Thickness of the highlight focus. Default is 1.

insertbackground Color of the insertion cursor. Default is BLACK.

insertborderwidth Size of the 3D border around the insertion cursor.
Default is 0.

insertofftime The OFF time [ms] during the blink cycle of the
cursor. Default is 300ms.

insertontime The ON time [ms] during the blink cycle of the
cursor. Default is 600ms.

insertwidth Width of the insertion cursor (height determined
by the tallest item in its line). Default is 2 pixels.

padx Size of internal padding to left and right of the
text area. Default is 1 pixel.

pady Size of internal padding above and below the text
area. Default is 1 pixel.

relief The 3D appearance of the text widget. Default is
SUNKEN.

selectbackground Background color of selected text.

selectborderwidth Width of the border around selected text.

spacing1 Amount of vertical space above each line of text.
If a line wraps, only affects the first line in the
multiline text. Default is 0.

spacing2 Amount of vertical space above each line of text
for all subsequent lines. Default is 0.

Description Option

�25

Adriana WISE Wednesday, October 14, 2015

There are methods to configure:
• text objects—used to process ranges of text from within the Text widget,

based on indices of characters within the line of text
• marks—used to bookmark positions between two characters within text from a

Text widget
• tags—used to associate names to regions of text, which makes easy to

distinguish between text areas when it comes to different formatting or to calling
different methods for them

spacing3 Amount of vertical space below each line of text.
It applies only below last line of multiline
wrapping text. Default is 0.

state When set to NORMAL, Text widgets respond to
keyboard and mouse events. To make the widget
unresponsive, set this option to DISABLED.

tabs Controls how tabs indent text.

width Width of the widget in characters.

wrap Controls the text wrapping behavior. If set to
WORD, text line will wrap after the first complete
word that fits. If set to CHAR, text line will wrap
at any character when the line hits its max width.

xscrollcommand To make text scrollable in the x dimension, this
option should be set to the set() method of the
horizontal scrollbar.

yscrollcommand To make text scrollable in the y dimension, this
option should be set to the set() method of the
vertical scrollbar.

Description Option

Text Object Methods Description

delete(startindex[, endindex]) Deletes a range of text.

get(startindex[, endindex]) Returns a range of text.

Text Object Methods

�26

Adriana WISE Wednesday, October 14, 2015

A mark indicates where the cursor is placed on existing text to begin insertion.
Gravity is a property through which you can specify where the mark will remain
after insertion (the opposite of which side of the mark the insertion will take place).

For example, if we want to insert an “o” in “Tyler J|seph”, and the mark is
indicated by the vertical bar, if the gravity is set to RIGHT (the default), the result
of the insertion is “Tyler Jo|seph”, i.e. the mark remains to the right of the inserted
letter.

index(index) Returns the absolute value of an
index, based on the index
passed in.

insert(index[, string], …) Inserts string starting at index
location.

see(index) Returns TRUE if text located at
index is visible.

DescriptionText Object Methods

Mark Object Methods Description

index(mark) Returns line and column of a mark.
A mark indicates where the cursor
is placed on existing text to begin
insertion.

mark_gravity(mark[, gravity]) Returns the gravity of mark passed
in. If the 2nd argument is provided,
the gravity is set for the given mark.

mark_names() Returns all marks from the Text
widget.

mark_unset(mark) Removes mark passed in from the
given Text widget.

�27

Adriana WISE Wednesday, October 14, 2015

Tags are used to associated names to regions of text, to make the task of
displaying settings for subsets (text areas) of text from a Text widget easier.

Tag Object Methods Description

tag_add(tagname,
startindex[, endindex])

Assigns a tag name to the range
specified either by a start index to the
end of the text, or by a pair start index,
end index.

tag_config Configures tag properties, such as justify
(options being CENTER, LEFT, or
RIGHT), tabs, and underline. The
properties apply to the tagged text.

tag_delete(tagname) Deletes the tagname passed in.

tag_remove(tagname[,
startindex[, endindex]])

Tag passed in as tagname is removed
from the provided area without deleting
its definition.

�28

