CSCI 33500 - Spring 2016 -
Answers to Homework \#1, Covering chapters 1 and 2.

1 Chapter 1 - Mathematical Background

1.1 Prove by induction that $\sum_{i=1}^{N-2} F_{i}=F_{N}-2$
where F_{i} is the i-th Fibonacci number, as defined in section 1.2 / page 6 of the book.
Answer: Base case: For $N=3$, we have $\sum_{i=1}^{3-2} F_{i}=F_{1}=1$ and $F_{3}-2=3-2=1$
Induction: Assuming that the equality is true for a given N , we have

$$
\begin{aligned}
& \sum_{i=1}^{(N+1)-2} F_{i}=F_{N-1}+\sum_{i=1}^{N-2} F_{i} \\
&=F_{N-1}+F_{N}-2 \text { by the induction hypothesis } \\
&=F_{N+1}-2 \text { by the definition of the Fibonacci series } \\
& \text { Q.E.D. }
\end{aligned}
$$

Thus the equality is true for all $N \geq 3$.
1.2 Prove by induction that $\sum_{i=1}^{N} i^{3}=\left(\sum_{i=1}^{N} i\right)^{2}$

Answer: Base case: For $N=1$, we have $\sum_{i=1}^{1} i^{3}=1^{3}=1$ and $\left(\sum_{i=1}^{N} i\right)^{2}=1^{2}=1$ Induction: Assuming that the equality is true for a given N , we have

$$
\begin{aligned}
\sum_{i=1}^{N+1} i^{3} & =(N+1)^{3}+\sum_{i=1}^{N} i^{3} \\
& =(N+1)^{3}+\left(\sum_{i=1}^{N} i\right)^{2} \text { by the induction hypothesis } \\
& =(N+1)^{3}+\left(\frac{N(N+1)}{2}\right)^{2}
\end{aligned}
$$

(we know the formula for the sum of the first N integers)

$$
=(N+1)^{3}+\frac{N^{2}(N+1)^{2}}{4}
$$

$$
\begin{aligned}
& =(N+1)^{2}\left((N+1)+\frac{N^{2}}{4}\right) \text { by factoring }(N+1)^{2} \\
& =(N+1)^{2}\left(\frac{4 N+4+N^{2}}{4}\right) \\
& =(N+1)^{2}\left(\frac{(N+2)^{2}}{2^{2}}\right) \\
& =\left(\frac{(N+1)(N+2)}{2}\right)^{2} \\
& =\left(\sum_{i=1}^{N+1} i\right)^{2}(\text { sum of first } \mathrm{N}+1 \text { integers })
\end{aligned}
$$

Q.E.D.

Thus the equality is true for all $N \geq 1$.
1.3 Prove that $2^{99} \equiv 1(\bmod 7)$

Answer: $2^{3}=8 \equiv 1(\bmod 7)$ thus $2^{99}=\left(2^{3}\right)^{33} \equiv 1^{33}(\bmod 7)$ thus $2^{99} \equiv 1(\bmod 7)$ Rule used: $A \equiv B \bmod (M)$ implies $A^{X} \equiv B^{X} \bmod (M)$.

2 Chapter 2 - Algorithm Analysis

2.1 Order the following functions by growth rate: $N, \sqrt{N}, N^{1.5}, N^{2}, N \log N, N \log \log N$ $N(\log N)^{2}, N \log N^{2}, 2 / N, 2^{N}, 2^{N / 2}, 99$ (constant), $N^{2} \log N, N^{3}, N^{N}, N!$. If two functions grow at the same rate, indicate so.

Answer: from slowest to fastest growing $2 / N, 99, \sqrt{N}, N, N \log \log N, N \log N, N \log N^{2}$, $N(\log N)^{2}, N^{1.5}, N^{2}, N^{2} \log N, N^{3}, 2^{N / 2}, 2^{N}, N!, N^{N}$
$N \log N$ and $N \log N^{2}$ growth at the same rate.
2.2 Find two function $f(N)$ and $g(N)$ such that neither $f(N)=O(g(N))$ nor $g(N)=$ $O(f(N))$. Explain your answer.

Answer: There are many possible answers. Here is an example:
$f(N)=N$ and $g(N)=N^{2} * \cos (N)^{2}$
$\cos (N)^{2}$ varies between 0 and 1 periodically, thus $N^{2} * \cos (N)^{2}$ varies from 0 to N^{2} over each period of cos.
Thus $\lim _{N \rightarrow+\infty} \frac{f(N)}{g(N)}$ does not exist
2.3 Give a Big-O analysis of the running time of the following code:

```
sum = 0;
for(i=0; i<N; ++i)
    for(j=0; j<i*i; ++j)
        for(k=0; k<j; ++k)
            ++sum;
```

Answer: j can be as large as i^{2}, which could be as large as $N^{2} . k$ can be as large as j, which is N^{2}. The running time is thus proportional to $N * N^{2} * N^{2}$, which is $O\left(N^{5}\right)$.
Alternatively:

$$
\begin{aligned}
T(N) & =\sum_{i=0}^{N-1}\left(\sum_{j=0}^{i^{2}-1}\left(\sum_{k=0}^{j-1} 1\right)\right) \\
& =\sum_{i=0}^{N-1}\left(\sum_{j=0}^{i^{2}-1} j\right) \\
& =\sum_{i=0}^{N-1} \frac{i^{2} *\left(i^{2}-1\right)}{2} \\
& =\frac{1}{2} *\left(\sum_{i=0}^{N-1} i^{4}-\sum_{i=0}^{N-1} i^{2}\right) \\
& =O\left(N^{5}-N^{3}\right)=O\left(N^{5}\right)
\end{aligned}
$$

3 Extra Credit

Give a Big-O analysis of the running time of the following code:

```
sum = 0;
for(i=0; i<N; ++i)
    for(j=0; j<i*i; ++j)
        if (j%i == 0)
            for(k=0; k<j; ++k)
            ++sum;
```

Compare this to the running time of the algorithm in question 2.3
Answer: The if statement is executed at most N^{3} times, by previous arguments, but it is true only $O\left(N^{2}\right)$ times (because it is true exactly i times for each i). Thus the innermost loop is only executed $O\left(N^{2}\right)$ times. Each time through, it takes $O(j)=O\left(i^{2}\right)=O\left(N^{2}\right)$
time, for a total of $O\left(N^{4}\right)$. This is an example where multiplying loop sizes can occasionally give an overestimate.

