CSCI 33500 - Spring 2016 Homework \#1, Covering chapters 1and 2.

Due in class February 18th

All questions are worth the same amount of points.

1 Chapter 1 - Mathematical Background

1.1 Prove by induction that $\sum_{i=1}^{N-2} F_{i}=F_{N}-2$ where F_{i} is the i-th Fibonacci number, as defined in section 1.2 / page 6 of the book.
1.2 Prove by induction that $\sum_{i=1}^{N} i^{3}=\left(\sum_{i=1}^{N} i\right)^{2}$
1.3 Prove that $2^{99} \equiv 1(\bmod 7)$

2 Chapter 2-Algorithm Analysis

2.1 Order the following functions by growth rate: $N, \sqrt{N}, N^{1.5}, N^{2}, N \log N, N \log \log N$ $N(\log N)^{2}, N \log N^{2}, 2 / N, 2^{N}, 2^{N / 2}, 99$ (constant), $N^{2} \log N, N^{3}, N^{N}, N!$. If two functions grow at the same rate, indicate so.
2.2 Find two function $f(N)$ and $g(N)$ such that neither $f(N)=O(g(N))$ nor $g(N)=$ $O(f(N))$. Explain your answer.
2.3 Give a Big-O analysis of the running time of the following code:

```
sum = 0;
for(i=0; i<N; ++i)
    for(j=0; j<i*i; ++j)
        for(k=0; k<j; ++k)
            ++sum;
```


3 Extra Credit

Give a Big-O analysis of the running time of the following code:

```
sum = 0;
for(i=0; i<N; ++i)
    for(j=0; j<i*i; ++j)
        if (j%i == 0)
        for(k=0; k<j; ++k)
            ++sum;
```

Compare this to the running time of the algorithm in question 2.3

