CSCI 33500 SOFTWARE DESIGN AND ANALYSIS III

Class \#1

Introduction

- CS LAB:
http://www.geography.hunter.cuny.edu/tbw/CS.Linux.Lab.FAQ/department of computer science.faq.htm
- email: twalter@hunter.cuny.edu
- Mentoring is available.

■ Syllabus: http://speech.cs.qc.cuny.edu/~felix/CSCI335-Spring16-Syllabus.pdf
■ Grading, homework, slides: http://speech.cs.qc.cuny.edu/~felix/Courses-Taught/Hunter-Spring2016-CSCI335.html

What is this class about?

- What makes an algorithm good or bad?
- This section will focus more on the mathematics of algorithms.
- Participation in class is expected. The only way to learn is practice.
- Half the class will be lecture, half will be practice.

■ As always, ask questions! This is your class.

Chapter 1 - Overview Math Review

■ Exponents

$$
\begin{aligned}
& X^{A} X^{B}=X^{A+B} \\
& X^{A} \\
& \overline{X^{B}}=X^{A-B} \\
& \left(X^{A}\right)^{B}=X^{A B} \\
& X^{N}+X^{N}=2 X^{N} \neq X^{2 N} \\
& 2^{N}+2^{N}=2\left(2^{N}\right)=2^{N+1}
\end{aligned}
$$

- Logarithms
- Definition

$$
X^{A}=B \text { if and only if } \log _{X} B=A
$$

- Conversion

$$
\log _{A} B=\frac{\log _{C} B}{\log _{C} A} ; A, B, C>0, A \neq 1
$$

- Multiplication to Addition (fundamental)
$\log A B=\log A+\log B ; A, B>0$

Chapter 1 - Overview Math Review

- Modulo Arithmetic
- We say that A is congruent to B modulo N if N divides $A-B$ written $A \equiv B \bmod N$
- Properties:
if $A \equiv B \bmod N$ then $A+C \equiv B+C \bmod N$ and $A C \equiv B C \bmod N$
- Theorems if N is prime:
$A B \equiv 0 \bmod N$ iff $A \equiv 0 \bmod N$ or $B \equiv 0 \bmod N$
if $A X \equiv 1 \bmod N$ and $0<A<N$, then there is a unique solution $0<X<N$ $X^{2} \equiv A \bmod N$ has either two solutions for all $0<A<N$ or no solution.

Chapter 1 - Overview Math Review

- Proof by contradiction: assume Hypothesis, prove that it leads to a contradiction
- Proof by Induction
- Two step process:

1- Verify the base case
2- Prove the Inductive Hypothesis

- Induction applied to programming: Recursion
- 1- Terminating condition(s)

2- Progress towards the terminating condition(s)

For next class: Thursday February 4th

- Finish Chapter 1
- Read Chapter 2

■ Get back in shape by practicing c++ on Hackerrank.com

Now on to practice!

Exercises

- Prove:

$$
\begin{aligned}
& \log A B=\log A+\log B \\
& \log A^{B}=B \log A
\end{aligned}
$$

- Induction/Recursion
- Prove that $\sum_{i=o}^{N} 2^{i}=2^{N+1}-1$
- Write a recursive function that returns the number of 1 in the binary representation of N

