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Abstract. Active exploration is a necessary component of a putative
spatial representation system in the mammalian brain. We address the
problem of how spatial exploratory behaviour is generated in rodents by
combining an artificial neural network model of place coding with a mul-
tiobjective evolutionary algorithm that tunes the model parameters so
as to maximise the efficiency of environment exploration. A central prop-
erty of the spatial representation model is an online calibration between
external visual cues and path integration, a widely accepted concept
in theoretical accounts of spatial learning in animals. We find that the
artificially evolved exploration model leads to recurrent patterns of ex-
ploratory behaviour in a way observed in experimental studies of spatial
exploration in rodents. Our results provide a link between the functional
organisation of the biological spatial learning network and the observed
high-level patterns of exploratory behaviour.
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1 Introduction

Exploratory behaviour is a necessary prerequisite of a putative spatial represen-
tation system in the mammalian brain [10]. Behavioural studies have shown that
in the course of environment exploration, various species have an important pre-
disposition to systematically come back to a well known location, termed home
base, resulting in looping, or round-trip, behaviour [2/5]. On the neural level,
active exploration has been proposed to subserve the construction of a mental
representation of space, thought to be learnt by a network of brain structures
mediating spatial cognition [I0]. According to the cognitive map theory, pyra-
midal cells in the hippocampal formation (termed place cells) code for spatial
locations in an environment [10]. Extensive theoretical and experimental studies
of the properties and origins of place cell activity showed that their location
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selectivity results from multisensory integration of allothetic (i.e. related to the
environmental landmark cues) and idiothetic (i.e. related to self-motion cues, or
path integration) information [8/I]. Despite the generally implied link between
exploratory behaviour and the construction of mental maps [10], the functional
relation between specific exploratory patterns and the spatial representation sys-
tem has not been proposed so far. In this study we test a novel hypothesis that
generation of exploratory behaviour is influenced by the functional organisation
of the underlying spatial representation network. In particular, we argue that
the necessity of keeping the allothetic and idiothetic components of the spatial
map coherent in time, leads to the observed round-trip exploratory patterns.

We use a neural network model of hippocampal place cells, which is a simpli-
fied version of our previous model that included realistic visual input, grid-cell
and place-cell networks [I1]. The central property of the used spatial learning
model is that a combination of external and self-motion cues is a necessary
condition to build robust place field representations. We adopt multiobjective
evolutionary algorithms (EA) [7/9] in order to optimally tune the parameters of
the model so as to ensure efficient exploration of a novel environment and study
the neural properties of the learnt spatial representation in evolved simulated
animals. Our results show that, given our model of spatial representation, the
round-trip behaviour is optimal in terms of minimisation of the self-localisation
error and maximisation of exploration rate (i.e. explored area per unit time).
These results link exploratory patterns observed in animals with cognitive map-
ping theories of hippocampal neural networks. In addition, they may provide
an insight into the biological solution for a well known problem in autonomous
robotics, that of simultaneous localisation and mapping (SLAM) [3].

2 Methods

2.1 Spatial Behaviour and Hippocampal Place Coding Model

In our simplified model of spatial behaviour, a simulated mouse explores a square
environment 1.6x1.6 m in time steps of At = 0.125 s, with a constant speed
v = 16 cm/s. At each time step, the motor command for the next movement
consists of a fixed displacement As = v - At and a rotation A¢ given by the
exploration controller (see below).

The spatial representation model constructs a representation of space, given
information about external landmarks and noisy estimations of self-motion in-
puts. While the fixed landmarks represent information about the true position
of the animal in space, tracked by vector s, an integration of noisy self-motion
inputs gives rise to the perceived position at time t, p* = (zt,y'), where:

zt =21 + Agcos(¢") (1)
y' =y + Assin(¢!) (2)
o' =¢'"1 + A (3)

The noisy estimates of displacement and rotation since the previous time step
are As = As + & and A¢ = A¢ + (, respectively, where £ and ( are zero-mean
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Fig. 1. The combined modelling and artificial evolution framework. (A) The spatial
learning model (top) consists of idiothetic cells (ICs), allothetic cells (ACs) and place
cells (PCs). Connection weights (dotted lines) are learnt during exploration, which
is under control of the exploration controller (bottom). (B) The parameters of the
exploration controller are optimised in the course of artificial evolution.

Gaussian noise variables with the standard deviation for £ equal to 50% of the
true As, and that for ¢ equal to 0.1 rad. In the following we omit the explicit
time dependence for clarity.

At each time step, the encoding of spatial information occurs in three neural
populations, termed idiothetic cells (ICs), allothetic cells (ACs), and place cells
(PCs), see Fig.[MA. Activity of an IC is given by:

_ o IC2
i€ = exp (—Hp Pt > (4)

20,

where p is the perceived position of the animal and p%c is the centre of the cell’s
Gaussian receptive field with width o, = 10 cm. The biological counterpart of
ICs are subpopulations of entorhinal grid cells [6]. Indeed, a thresholded sum of
many grid-cell activities gives rise to an approximately Gaussian profile [SITT].
In contrast to ICs, ACs encode an internal representation of fixed external
landmarks, and hence their activity is centred on the true position s of the

animal: i AC | |2
AC S — Pi
T exp < 2. ) (5)
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where piAC is the centre of the AC’s receptive field with o5 = 10 cm. A new AC
is recruited at each time step during exploration, unless more than 10 ACs are
highly active (with threshold 0.9).

Finally, PCs that represent hippocampal place cells in the model, are recruited
online similarly to ACs. Once recruited, a PC is connected to all ICs and ACs
that are highly active at the moment. Connection weights, wfjc, from input cell
(either IC or AC) j to PC i are set equal to the input activity (i.e. learnt by
one-shot Hebbian learning). The activity of the PC is calculated as a vector
product of input activities and the weight vector, i.e. 77 c=¥% j wfjcrj, where j
spans all presynaptic ACs and ICs, and r; is the activity of the corresponding
input cell. Weights are normalised so that maximal activity of a PC is 1.

A central property of the model is the interplay between the idiothetic and
allothetic sensory signals. More specifically, the activity of ACs is used to correct
the noisy self-motion related information provided by ICs. Whenever the number
of highly active ACs exceeds 10, the perceived position p is corrected by the

allothetic input:
p=p+a(p*®-p) (6)
¢ =¢+a(0"C —¢)

is the centre of mass of the population of ACs:

AC_ZTZACSUL AC_ZT%AC% 7
= S =50 )
71 71

where pA€ = (24€, 4AC)

T

and (x;,y;) are the perceived coordinates stored at the moment of each AC
recruitment. ¢*C is assumed to be equal to the true heading direction of the
animal, meaning that the error in the integration of head direction is cumula-
tive, but only until the correction by the allothetic input is made. Note that
the true position s is used only to calculate the AC activity — which roughly
corresponds to the activation of the same visual receptors when the same visual
cue is observed. In all other formulae it is the perceived position that is used,
which is subject to the cumulative error.

2.2 Control of Active Exploration by Artificial Evolution

In the model, the direction of the next exploratory movement A¢ (see Section
27)) is the output of an exploration controller (Fig. [[IA) represented by a two-
layer neural network with sigmoidal units. Apart from the constant bias equal
to 1, the controller’s inputs are the uncertainty u(t), given by a threshold-linear
function of the time since the last calibration:

u(t) = min (’f o 1) (8)

reset to 0 upon each recalibration (i.e. the process described by Egs. [l[f]), and
the egocentric homing direction Agy:

Ao = ¢(t) — arctan(y/x) (9)
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where ¢(t) is the current heading direction, and (z,y) is the current perceived
position vector. Input values are normalised to be in [—1, 1], while the output
value A¢ lies in the range [—m, 7].

The weight vector w of the exploration controller is evolved according to a
multiobjective genetic algorithm [7]. The algorithm starts by generating Ny =
1000 simulated mice with random sets of controller weights (i.e. random genomes).
During an evaluation phase, each simulated mouse explores a square environ-
ment (Fig. [[B), until 500 PCs are recruited or 1000 time steps passed. A home
base is simulated by recruitment of 30 ACs and PCs near the point of entry at
the start of the phase. During the following selection phase, the most efficient
simulated mice are chosen according to a two-step process. First, two fitness
values F} and F; are calculated. F} quantifies the accuracy of the spatial code
as the negative mean path integration error:

1 Npc
F =— S; — Pi 10
1= oo 2 sl (10)

where Np¢ is the number of PCs recruited during the exploration run, s; and
pi are, respectively, the true and perceived positions of the simulated mouse
when the place cell ¢ was recruited. F» measures the exploration rate as the
number of visited quadrants (out of a total 32x32 quadrants, arranged in a
grid covering the surface of the arena) per time step. Second, a Pareto-efficiency
criterion [7] is used to select the best genomes based on the two fitness values.
The selected individuals are used, together with random mutations, to produce
the next generation consisting of 100 simulated mice. The evaluation-selection-
reproduction cycles are repeated until performance convergence occurs. Artificial
evolution simulations were performed using the Sferes2 software platform [9].

3 Results

In the course of artificial evolution, the exploration controller was progressively
optimised so as to simultaneously increase the spatial accuracy (F'1) and the
exploration rate (F'2), with stabilisation of performance starting after approxi-
mately 500 generations (Fig. 2]A). For further analysis we distinguish two types
of simulated mice: ‘random explorers’, which maximise only exploration rate,
and ‘map builders’, which maximise both exploration rate and spatial accuracy
(simulated mice that maximise only spatial accuracy always stay in the close
vicinity of the home base and thus were not analysed further).

As illustrated by the example traces and the corresponding path integration
errors, (Fig.2B), random explorers quickly lost track of their position, in a sharp
contrast to map builders, who tracked their true position with a relatively high
accuracy. In order to characterise these differences on the level of a single genome,
we compared input-output mappings of the exploration controllers of the random
explorer and map builder. In Figure P2IC, we show a difference between the next
direction of movement and the direction towards the home base as a function of
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Fig. 2. Fvolution of exploratory behaviour. (A) Changes in Pareto front across gen-
erations. (B, C) Paths (B, top), path integration errors (B, bottom), and controller
input-output mappings (C) for random explorers (left) and map builders (right).

the uncertainty parameter u. Whereas the behaviour of the random explorer is
largely independent from the uncertainty, the map builder heads home when the
uncertainty is close to its threshold value. These results support our hypothesis
that round-trip homing behaviour (as observed in map builders) can result from
the need to keep allothetic and idiothetic position estimates coherent in time.

We next checked whether the round-trip behaviour results in a more accurate
spatial representation compared to that of random explorers. Indeed, spatial
representation on the level of single PCs (Fig.[BIA) as well as on the level of the
whole PC population (Fig.[BB) are more accurate in map builders then explorers.
Multipeaked receptive fields in random explorers are due to incoherent position
estimation by allothetic (ACs) and idiothetic (ICs) cell populations. Finally, we
ensured that the differences between random explorers and map builders illus-
trated in Fig. and Figs. BA, B are stable across 10 different runs of evolu-
tionary optimisation. We found that (i) map builders have significantly smaller
path integration error (Fig. BIC, ANOVA, Fj 15 = 72.07, P < 0.0001); (ii) the
number of (single-peaked) highly active cells is larger in map builders (Fig. BD,
ANOVA, Fy 13 =190.1, P < 0.0001); (iii) proportion of identified locations, i.e.
those with coherent activations of ACs and PCs, is much higher in map builders
(Fig. BE, ANOVA, F 15 = 152.43, P < 0.0001); and (iv) self-localisation error
in these identified locations is smaller in map builders, compared to random
explorers (Fig. BF, ANOVA, F; 15 = 19.46, P < 0.001).
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Fig. 3. Spatial representations in map builders and random explorers. (A, B) Examples
of unitary place fields (A) and of hippocampal population activity profiles (B) for a
map builder (left) and a random explorer (right). Colour codes for activity levels from 0
(black) to 1 (white). Black stars mark the true animal positions. (C-F) Bar plots show
the mean £SD, across representative simulated mice from 10 different evolution runs,
of path integration error (C), the proportion of highly active cells (D), the proportion
of identified locations (E), and the population-encoded localisation error (F) for map
builders (white) and random explorers (black).

4 Discussion

In this study we combined a spatial learning model with an artificial evolution
approach to test the hypothesis that exploratory behaviour can be generated
based on the functional organisation of the underlying spatial representation
network. Our results suggest that round-trip exploration, a basic structural pat-
tern of spatial behaviour observed in animals [2/5], can emerge as a result of
an optimisation criterion based on the hypothesis that accurate spatial learning
requires a combination of allothetic and idiothetic information [IJ.

The theoretical concept of combining allothetic and idiothetic inputs to form
a stable representation of space is not new and served as a basis for a range of
neurocomputational models of rodent behaviour (e.g. [SI11]). However, a funda-
mental problem with this concept in its current state is that it does not provide
a mechanistic explanation of how allothetic and idiothetic cues are combined in
a coherent representation during the beginning of exploration in a novel envi-
ronment. This problem is well studied in the robot navigation field, where it is
known as the Simultaneous Localisation and Mapping (SLAM) problem, solu-
tion to which is considered to be one of the notable achievements in robotics for
the past two decades [3]. However, robotics solutions are generally not biologi-
cally plausible and provide poor explanation for the observed animal behaviour.
Here, we addressed a similar problem using an artificial neural network model
based on widely accepted hypotheses about the functional organisation of the
spatial representation system in the mammalian brain.
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In this study we used evolutionary algorithms (EAs) to tune the parameters of
the exploration controller. The application of EAs in the present case is justified
for two reasons. First, it is difficult to use standard gradient descent methods
for model training here, since (i) the link between the parameters of the con-
troller and the resulting behaviour is not formally defined, and (%) the notion of
‘error’ is hard to define for exploratory behaviour. Second, given that a similar
spatial representation system is used by many species (including rats [10] and
humans [4]), it might be argued that efficient exploration mechanisms must have
appeared at the same time as the spatial representation system itself. On these
grounds, an application of EAs is natural for this problem, albeit we recognise
that it is rather the computational nature of the problem than its relation to
evolution that prompted us to use EAs in the current work.
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