
Reservoir Computing for Recurrent Neural Networks
Felix Grezes {fgrezes@gc.cuny.edu}

advised by Pr. Andrew Rosenberg and Pr. Noemie Elhadad
The Speech Lab at Queens College CUNY

Abstract

Historically, research has focused on Recurrent Neural
Networks (RNNs) because of their capacity to model
dynamical system and/or their biological plausibility.
However traditional neural network approaches, such has
gradient descent, are either impossible or too slow to be
applied successfully to RNNs.
The Reservoir Computing paradigm, by separating the
optimization of the network layer from the output layer,
attempts to solve these issues. Since 2001, it has proven
itself to be fast and effective in a variety of applications.

The Reservoir Computing Paradigm

In traditional RNN approaches, the input-output error is
propagated throughout all the weights of the networks.
Unfortunately RNNs are difficult to train by gradient
descent based methods, which aim at iteratively reducing
the error. The gradual changes lead to bifurcations, and
at such points, the gradient information degenerates and
may become ill-defined. As a consequence, convergence
cannot be guaranteed. Additionally gradient information
dissolves exponentially fast, making it is intrinsically hard
to learn long-range memory dependencies.

In a reservoir network, only the weights in the output layer
are trained by the errors. The network weights and
connections are randomly set at the beginning and never
updated. Like conventional RNNs, a reservoir network
possesses a dynamical memory and is able to process
temporal context information.

Output Layer Training

Training the output layer is a common, non-temporal task
of mapping the input to the target output. This is a well
investigated domain in machine learning, and a large
choice of methods are available. Some of the most
popular are Linear Regression and SVMs.

Reservoir Creation

However, not all reservoir networks with random
architectures have desirable behavior. Most importantly,
the cycles in the network can produce amplification
effects, eventually saturating the nodes.
Good networks possess the following two useful, but
conflicting, properties:
• Echo State Property: the effect of a previous state and
input should vanish over time.
• Separability: different inputs should stabilize on different
outputs.

A common practice to balance these two properties is to
make the weight matrix big, sparse and random; which
makes the activation signals numerous, decoupled and
varied. The weight values are then downscaled to prevent
any amplification.

A Toy Problem

We define a simple task to display the temporal memory
of reservoir networks. The goal is to reproduce a random
input signal with a K-steps delay.

0 10 20 30 40 50 60 70−10

−5

0

5

10
input

0 10 20 30 40 50 60 70−15

−10

−5

0

5

10

15
target
output

As shown above, a network consisting of just 50 neurons
can reproduce the input signal (in red) with a 5 time-step
delay almost perfectly. The desired target signal is in blue
and the produced output signal in green.
∗ Note: The above results are artificially worsened for visualization
purposes.

Current Research and Applications

Since it’s inception in the early 2000s, the Reservoir
Computing paradigm has been successfully been applied
to a variety of scientific fields:
• NLP: Phoneme recognition with large hierarchical
reservoirs, Triefenbach et al., NIPS 2011.
• Computational Neuroscience: A reservoir of time
constants for memory traces in cortical neurons,
Bernacchia et al., Nature Neuroscience 2011.
• Physics: Constructing optimized binary masks for
reservoir computing with delay systems, Appeltant et al.,
Nature 2014

My own research is centering on two topics: applying the
Reservoir Computing paradigm to speech NLP tasks
within Pr. Rosenberg’s lab; and studying how reservoir
can be used for multi-task learning (as described by
Collobert et al.), applying the paradigm to medical data
under the supervision of Pr. Elhadad.

poster template from http://www-i6.informatik.rwth-aachen.de/ dreuw/latexbeamerposter.php


