
Reservoir Computing for Neural Networks

Felix Grezes

CUNY Graduate Center

fgrezes@gc.cuny.edu

September 4, 2014

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 1 / 33



Introduction

The artificial neural network paradigm is a major area of research
within A.I., with feedforward networks having the most recent success.

Recurrent networks offer more biological plausibility and theoretical
computing power, but exacerbate the flaws of feedforward nets.

Reservoir computing emerges as a solution, offering a generic
paradigm for fast and efficient training of RNNs.

Used in a variety of fields: NLP, computational neuroscience,
robotics, machine learning and more.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 2 / 33



Overview

1 Introduction

2 Neural Networks
Short History
Feedforward Networks
Recurrent Neural Networks

3 The Reservoir Computing Paradigm
Models
Reservoir Computing Theory

4 How the Reservoir Computing Paradigm is used
Other Randomized Networks

5 Conclusion
Future Work using Reservoirs

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 3 / 33



Short History of Neural Networks

Some Important Dates

1890 Discovery of the biological neuron by Golgi and Ramón y Cajal.

1957 Rosenblatt’s Perceptron:
f (x) = 1 if w · x + b > 0, and 0 otherwise.

1969 Minsky and Papert show that perceptron cannot learn XOR

1975 Werbos proposes the backpropagation algorithm, training over
multiple layers of perceptrons.

1989/91 Cybenko/Hornik proves that multi-layer feedforward
networks are universal function approximators.

1990 Werbos proposes the backpropagation through time algorithm
for RNNs.

2001/02 Jaeger/Maass propose the reservoir computing paradigm,
under the names of Echo State Networks/Liquid State Machines.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 4 / 33



Feedforward Networks - The Artificial Neuron

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 5 / 33



Feedforward Networks Architecture

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 6 / 33



Feedforward Networks - Universal Approximators

In landmark results, Cybenko (1989) and Hornik(1991) proved that
feedforward networks can approximate any continuous function from
R→ R under certain conditions:

The activation function needs to be continuous, non-constant,
bounded, and monotonically-increasing.

The network contains one or more hidden layers.

These results show that it is the layered architecture that gives the
networks the power to approximate any function, legitimizing the search
for the most efficient learning algorithms.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 7 / 33



Backpropagation - Werbos (1975)

The most successful training algorithm for feedforward neural networks.
It is a variant of gradient-descent and requires the activation function to
be differentiable.

Steps:

1 Forward propagation of the input values to obtain the activation of
each neuron.

2 Backwards propagation of the error for each node, in order to
calculate the delta (weight update) for each weight. Computing the
delta is done by using the calculus chain rule to calculate the partial
derivative of the error with respect to a weight.

3 Update each weight according to the gradient and learning rate.

4 Repeat until the error over the data is below a threshold, or the
gradient converges, or for a fixed number of iterations.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 8 / 33



Recurrent Neural Networks

Recurrent Neural Networks contain cycles in the graph.

Why study recurrent neural networks?

The human brain has a recurrent architecture. Computational
neuroscientists need to understand how RNNs work.

Because of the recurrent architecture, RNNs approximate not just
functions but dynamical systems.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 9 / 33



RNNs - Dynamical Systems

Definition

A discrete dynamical system is defined by a state x ∈ X (state space) that
evolves over discrete time-steps according to a fixed rule f .
The rule f is a function of time and the initial state x0, and f (x0, t) it the
state at time-step t.

Dynamical system are famous for their long term dependencies and
sensitivity to small initial changes (Chaos Theory).

RNNs can model complex dynamical systems, allowing them to
’remember’ input values over time by echoing them through the network
nodes. This is particularly useful for tasks with temporal dependencies.

Feedforward networks have relied on hand-crafted data representation, e.g.
n-grams in NLP tasks.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 10 / 33



Training RNNs

Universal Approximator Theorem - Siegelmann and Sontag (1991)

Similar to feedforward networks, RNNs are universal approximators of
dynamical systems, proved by emulating a universal Turing machine.

Backpropagation Through Time - Werbos (1990)

Adapts the backpropagation algorithm by ’unfolding’ the RNN into a
feedforward network at each time step. The related weights are tied by
averaging the changes after each iteration.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 11 / 33



The Vanishing Gradient Problem - Hochreiter (1991)

In networks with many hidden layers, the error gradient weakens as it
moves from the back of the network to the front.

RNNs trained with BPTT exacerbate the problem since the number
of layers grows over time.

Schiller and Steil (2005) verified this effect experimentally, noticing
that dominant changes during training only appeared on the output
layer of the network.

The reservoir computing paradigm emerges as a solution.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 12 / 33



The Reservoir Computing Paradigm for RNNs

Central Idea

Since only the changes in the output layer weights are significant, then the
treatment of the weights of the inner network can be completely separated
from the treatment the output layer weights.

In many practical applications, the initial weights of the network are
randomized and never changed, with only the weights of the output layer
being trained, usually by a simple linear classifier such as logistic regression
or the least squares.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 13 / 33



Reservoir Models

The idea of reservoir computing was proposed independently by multiple
teams in the early 2000s. Since 2008, they have been united under the
reservoir term.

Echo State Networks - Jaeger (2001)

Pioneered by Jaeger and his team. Their work focused on the properties of
reservoir networks that make them work, and applied them to signal
processing tasks, from a machine learning angle.

Liquid State Machines - Maass (2002)

Proposed by Maass, LSMs are the other pioneer model of reservoir
computing. Coming from a neuroscience background, this type of reservoir
has been used to understand the computing power of real neural circuits.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 14 / 33



Other Models

The reservoir computing paradigm can be extended beyond neural
networks.

Water Basin - Fernando (2003)

Taking the idea of a reservoir and echoes literally, an experiment was set
up where the inputs were projected into a bucket of water, and by
recording the waves bouncing around the liquid’s surface, the authors were
able to successfully train a pattern recognizer.

Bacteria Colony - Fernando(2007)

Another exotic idea for an untrained reservoir is an E.Coli. bacteria colony,
with chemical stimuli as input and protein measures as output.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 15 / 33



Why do untrained reservoirs work?

All these reservoir models rely on exploding the data dimensions in a
random or untrained manner, where it can then be easily classified.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 16 / 33



Reservoir Computing Theory - Echo State Property

Because of the network cycles, node activities can be self-reinforcing,
leading to a saturation of the network. To avoid this, reservoir networks
should possess the Echo State Property.

Definition: Echo State Property

The influence of past inputs and past states over the network activities
should gradually vanish over time.

Heuristics

Scale the weights of the network to a desired spectral radius of the
weight matrix.

A spectral radius smaller than 1 guarantees the echo state property.

For practical tasks with long range time dependencies, the spectral
radius should be close to 1 or slightly larger.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 17 / 33



Reservoir Computing Theory - Separability

If two different input signals produce a similar output signal, then the
output layer classifier will fail.
To produce reservoirs with a high separability power, the network should
be:

Large, allowing numerous activations.

Sparse, making the activations decoupled.

When producing random reservoirs, their separability power can be
compared by measuring the distances between states of different inputs.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 18 / 33



Reservoir Computing Theory - Topology

The best topology for a reservoir network remains an open question, and
certainly task dependent.

A study by Liebald (2004) compared well known topologies on dynamical
system prediction tasks, including small world, scale free, biologically
inspired, and exhaustively searching very small networks.

No specific topology performed better than fully random networks.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 19 / 33



How the Reservoir Computing Paradigm is used

Since the discovery of reservoir computing in the early 2000s, it has been
applied in a number of tasks.

Computational Neuroscience

Machine Learning

Speech Processing

Physics: Hardware Implementation

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 20 / 33



Research using Reservoirs

The use of reservoir in scientific research can be broadly classified in two
categories:

Used as a generic and powerful machine learning tool.

Used to explain and simulate realistic biological processes.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 21 / 33



Reservoirs in Neuroscience - Dominey (1995)

Dominey was the first to exhibit reservoir patterns in the brain, as
early as 1995, before the reservoir computing was coined.

He was the first to spell out that some parts of the brain seemed to
be randomly connected and did not change over time, and that
learning only happened on the output layer.

In this early work, the activity of the pre-frontal cortex was simulated
using leaky-integrator neurons and the least-mean squares output
classifier.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 22 / 33



Reservoirs in Neuroscience - Bernacchia (2011)

The authors found that monkey brains exhibit multiple timescales when
processing expected rewards. Classical reinforcement learning only
accounts for a fixed timescale.

What was observed

The activation of different blocks of neuron correlated with when the
monkey expected a reward.

How this was reproduced

Single 1000 neuron reservoir, with sparse and random connections. The
simulations showed a similar distribution of timescales in neural activation.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 23 / 33



Reservoirs in Neuroscience - Hinaut (2014)

Combines research from neuroscience, robotics and linguistics to show that
an iCub robot can learn complex grammar systems through purely
associative mechanisms observed in its environment.

The iCub robot learning from its environment

By using a reservoir network modeled after the human pre-frontal cortex,
the robot learns that sentences like ”John hit Mary” and ”Mary was hit by
John” have the same meaning and same grammatical structure.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 24 / 33



What do Reservoirs bring to Neuroscience?

Some kind of learning must be going on in the recurrent networks that are
animal brains. But from a purely mechanical viewpoint, is it realistic that

errors can influence every single connection between neurons?

If efficient training of RNNs is possible using the reservoir computing
paradigm, it may drastically simplify the chemical mechanisms needed to
explain the learning capacities of the brain.
Neuroscientists could confirm or refute this hypothesis with precise
observations of neural activities.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 25 / 33



Reservoirs in Machine Learning - Oubbati (2012)

Multi-objective Problems

Multi-objective tasks seeks a solution that balances multiple goals at the
same time: speed/quality, financial/social.

The authors used a technique called Adaptive Dynamic Programming
developed to solve these multi-objective tasks, but needed a fast and
powerful ”critic” to compute multiple expected rewards at once.

Reservoir networks satisfy these criteria and proved capable of reaching
different Pareto optimal solutions, depending on the preferences of the
critic.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 26 / 33



Reservoirs in Speech Processing - Triefenbach (2010)

Can reservoir networks compete with other state of the art techniques
(HMM, Deepf Belief Nets) on the task of continuous phoneme recognition
on the TIMIT dataset?

Results

The overall performance was comparable to more sophisticated approaches.
The second layers improves the recognition rate by 3-5%, but subsequent
layers only provide minimal gain.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 27 / 33



What do Reservoirs bring to Machine Learning?

The reservoir computing paradigm provides scientists with a generic and
powerful tool to tackle tasks that require temporal dependencies, without
requiring hand-crafted data representations.

With the above early success, the path is clear for other fields to use the
paradigm. Simple ideas: continuous hand-written character recognition,
stock market predictions...

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 28 / 33



Hardware Implementation - Appeltant 2011

Hardware implementation are always much faster than computer
simulation. However, it is both expensive to create random circuitry, and
inefficient since not all random topologies possess the appropriate
properties.

The authors test a tunable dynamical system, whose values are saved for a
number of time-step. These delayed values act as virtual nodes of the
reservoir, whose connections to the output layer a trained in classical
reservoir fashion.

The Mackey-Glass oscillator

The state X evolves according to Ẋ (t) = −X (t) + η·[X (t−τ)+γ·J(t)]
[1+X (t−τ)+γ·J(t)]p

with η, γ, p tunable parameters. J(t) is the input vector.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 29 / 33



Other Randomized Networks

The idea of separating the treatment of the output layer from the inner
layers has also been applied to feedforward networks.

Extreme Learning Machines - Huang (2011)

Randomize weights for the hidden layers.

Train only weights of the output layer.

ELMs have also been proven to be universal approximators, and applied to
both toy tasks and real world problems.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 30 / 33



Conclusion

The simple reservoir computing paradigm states that recurrent neural
networks can be efficiently trained by optimizing only the weights
connected to the output neurons, leaving the weights of internal
connections unchanged.

The reservoir computing paradigm offers a theoretically sound
approach to modeling dynamical systems with temporal dependencies.

The paradigm also promises to be much more computationally
efficient than traditional RNN approaches that aim at optimizing
every weight of the network.

Reservoir computing techniques have successfully been applied to
classical artificial intelligence problems, providing state-of-the-art
performance on engineering problems, and offering explanations of
biological brain processes.

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 31 / 33



Future Work using Reservoirs

Speech Lab @ Queens College: speech prosody analysis.

NSF IGERT: Multi-disciplinary work (bio-medical data)

I have already explored toy problems using reservoir networks,
implemented using the OGER Python toolbox.

0 10 20 30 40 50 60 70−10

−5

0

5

10
input

0 10 20 30 40 50 60 70−15

−10

−5

0

5

10

15
target
output

Results of a simple 50 neuron random reservoir on a k-delay replication task

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 32 / 33



The End

Thank You

Felix Grezes (CUNY) Reservoir Computing September 4, 2014 33 / 33


	Introduction
	Neural Networks
	Short History
	Feedforward Networks
	Recurrent Neural Networks

	The Reservoir Computing Paradigm
	Models
	Reservoir Computing Theory

	How the Reservoir Computing Paradigm is used
	Other Randomized Networks

	Conclusion
	Future Work using Reservoirs


