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Introduction: Even before Artificial Intelligence was its own field of computational
science, humanity has tried to mimic the activity of the human brain. In the early 1940s
the first artificial neuron models were created as purely mathematical concepts. Over the
years, ideas from neuroscience and computer science were used to develop the modern Neural
Network. The interest in these models rose quickly but fell when they failed to be successfully
applied to practical applications, and rose again in the late 2000s with the drastic increase
in computing power, notably in the field of natural language processing, for example with
the state-of-the-art speech recognizer making heavy use of deep neural networks.

Recurrent Neural Networks (RNNs), a class of neural networks with cycles in the network,
exacerbates the difficulties of traditional neural nets. Slow convergence limiting the use to
small networks, and difficulty to train through gradient-descent methods because of the
recurrent dynamics have hindered research on RNNs, yet their biological plausibility and
their capability to model dynamical systems over simple functions makes then interesting
for computational researchers.

Reservoir Computing emerges as a solution to these problems that RNNs traditionally
face. Promising to be both theoretically sound and computationally fast, Reservoir Comput-
ing has already been applied successfully to numerous fields: natural language processing,
computational biology and neuroscience, robotics, even physics. This survey will explore the
history and appeal of both traditional feed-forward and recurrent neural networks, before
describing the theory and models of this new reservoir computing paradigm. Finally recent
papers using reservoir computing in a variety of scientific fields will be reviewed.
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Chapter 1

History of Neural Networks

1.1 Appeal and Historical Recap

Explaining and reproducing human thought have always interested scientists and philoso-

phers, but only with the discovery of the neuron in the 1890s by Golgi and Ramón y Cajal,

and with the advent of the computer after 1950 has it finally become a feasible goal. Today

artificial intelligence is a major area of research (again to both scientists and philosophers),

and artificial neural networks an important paradigm of AI.

An early and promising model was the perceptron, proposed in 1957 by Rosenblatt [1] of the

Cornell Aeronautical Laboratory. Modeling a single neuron and using simple algorithms, the

perceptron is able to learn a number of functions of its inputs. The output of the perceptron

is computed as follows: f(x) = 1 if w · x + b > 0, and 0 otherwise, where w · x is the

dot-product of the input x with the weight vector w (i.e. the weighted sum of the inputs),

and b is a bias term which acts a threshold.

However in 1969 Minsky and Papert [2] showed that not all functions can be learned by the

perceptron, most famously the XOR (eXclusive OR) logical operation, since the perceptron

is only a linear classifier. Still, research in the field stagnated until Werbos proposed the
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backpropagation algorithm in 1975, which solved the XOR problem by training over multiple

layers of neurons. By the mid 1980s the study of artificial neural networks became a fully

established field, with dedicated journals and conferences.

1.2 Feed-Forward Networks: Definitions and Theory

The fundamental building block of a neural network is the neuron. In essence the neuron is

simply a model for a multivariate function whose input variables are weighted by a weight

vector. Mathematically: f(x) = ϕ(w · x + b) , with ϕ the chosen activation function, and

w, x, b the same as in the perceptron, i.e. respectively the weight vector, the input vector

and the bias term. Figure 1.1 gives a visualization of the artificial neuron model.

Figure 1.1: Model of an Artificial Neuron

The activation function is usually chosen to be non-linear, as to allow the neuron, and
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the networks built from neurons, the power to approximate any mathematical function (see

Cybenko-Hornik results below). Some popular choices are, threshold similarly to the per-

ceptron, tanh and sigmoid which are continuously differentiable. Research is also done on

more esoteric activations, such as the cosine or radial functions [3].

However, the perceptron alone can only learn linear functions. Combining mathematical

into networks, similar to how biological brains are a network of neurons, can help overcome

this linear limitation, as will be shown in following paragraph. The first type of network

architecture we consider is the feedforward network, in which the network does not contain

cycles. Figure 1.2 shows a graphical representation.

Figure 1.2: Model of an Feedforward Neural Network
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In a landmark paper, Cybenko [4] proved in 1989 that a feedforward network containing

a single hidden layer or neurons with sigmoidal activation could approximate any continuous

function of R→ R, renewing interest in the field. In 1991 Hornik [5] proved the same for any

activation function that is continuous, non-constant, bounded, and monotonically-increasing,

showing that it is the multilayer feedforward architecture that provides the universal approx-

imation power of neural networks.

Armed with this theoretical knowledge, research focused on the practical application of

feedforward networks. To approximate functions whose analytical form is unknown or non-

existent, the proper weights have to be applied to the neuron inputs. The search for these

weights is the called the training of the network, and algorithms that perform this task are

often called ’learning’ or ’teaching’ algorithms if applied in a supervised context. The most

successful of these learning algorithms is the backpropagation method, discovered by Paul

Werbos in 1974 [6] but only popularized by Rumelhart et al. in 1986 [7].

The backpropagation algorithm is a variant of gradient-descent.

It requires the activation function used by the neurons of the network to be differentiable.

It also requires a cost function that can be written as an average over cost functions for

individual training examples.

The steps of the algorithm are as follows:

1. Forward propagation of the input values to obtain the activation of each neuron.

2. Backwards propagation of the error for each node, in order to calculate the delta

(weight update) for each weight. Computing the delta is done by using the calculus

chain rule to calculate the partial derivative of the error with respect to a weight.
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3. Update each weight according to the gradient and learning rate.

4. Repeat until the error over the data is below a threshold, or the gradient converges, or

for a fixed number of iterations .

The algorithm is made possible by using the chain rule from calculus to iteratively compute

gradients for each layer, and relies on 4 equations:

1. An equation for the error in the output layer: δL, a vector whose components are given

by: δLj = ∂C
∂aLj

σ′(zLj ). C is the cost/error, the ∂C/∂aLj measures how fast the cost is

changing as a function of the jth output activation,zL is the vector of weighted input to

the neurons in layer L, the final term σ′(zLj ) measures how fast the activation function

is changing at this neuron.

2. An equation for the error δl in terms of the error in the next layer δl+1 given by:

δl = ((wl+1)T δl+1) � σ′(zl). Here � is the Hadamard product for matrices in which

elements are pair-wise multiplied [8], (wl+1)T is the transpose of the weight matrix for

the l + 1th layer.

3. An equation for the rate of change of the cost with respect to any bias in the network:

∂C
∂blj

= δlj, where blj is the bias of the jth neuron of layer l.

4. An equation for the rate of change of the cost with respect to any weight in the network:

∂C
∂wl

jk
= al−1k δlj. This lets us compute the partial derivative in term of quantities δlj and

al−1k we already know how to compute.

See [9] for an in-depth analysis and proof of the backpropagation algorithm.

Since no assumptions are made over the training dataset, it is possible to use batch, stochastic
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or on-line training. In on-line and stochastic learning, each propagation is followed imme-

diately by a weight update. In batch learning, many propagations occur before updating

the weights. On-line learning is used for dynamic environments that provide a continuous

stream of new patterns. Stochastic goes through the data set in a random order in order

to reduce its chances of getting stuck in local minimum. Stochastic learning is also much

faster than batch learning since weights are updated immediately after each propagation.

Yet batch learning will yield a much more stable descent to a local minimum since each

update is performed based on all patterns.

The main limitation of the backpropagation algorithm is the long time needed for proper

training. One reason for this can be the vanishing gradient problem.

This fundamental limitation of multi-layered neural networks was first described by

Hochreiter in his 1991 thesis [10] and further investigated in two following papers [11, 12].

By observing the gradient of the lth layer of an L layer network, which is given by (in vector

form):

δl =
∑′(zl)(wl+1)T

∑′(zl+1)(wl+2)T ·
∑′(zL)5a C.

Here,
∑′(zl) is a diagonal matrix whose entries are the σ′(z) values for the weighted inputs

to the lth layer. The wl are the weight matrices for the different layers. And 5aC is the

vector of partial derivatives of C with respect to the output activations. The important fac-

tors here are σ′(z) which get repeatedly multiplied by the weights w. If the absolute value

of these products are all smaller than 1, then the absolute value of the gradient will be close

to 0. Unfortunately, because the activation functions are generally squashing functions with

values converging to −1 or −1 as they approach −inf and +inf respectively, so as w gets
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very large or very small, σ′(z) = σ′(wa + b) goes to 0. Because each layer adds an extra

product to the computation of the gradient, the weights furthest from the output are the

slowest to change. This has been verified empirically [9, 13, 14].

Despite this issue, deep neural networks have enjoyed success in recent years. Effective pre-

training techniques have shown that careful choices in initial weights can lead to efficient

learning [15], and specialized architectures such as convolutional nets which are biologically

inspired networks in which the weights are tied and connections sparse [16, 17]. Nonetheless

these techniques remain specialized workarounds for specific tasks and domain, and are not

appropriate for all tasks.

1.3 Recurrent Neural Networks

Part of the appeal of neural networks is the parallel with the human brain. However, the

network architecture of neurons within the brain is decidedly not a feedforward architecture.

In the human brain, billions of neurons are combined in separated lobes and cortices, with

electrical signals traveling in all directions. This type of network in which contains cycles

are called Recurrent Neural Networks (RNNs). These RNNs are useful because they have

superior theoretical computational power. A feedforward network approximates a mathe-

matical function, whereas RNNs approximate dynamical systems. Dynamical systems are

essentially functions with an added time component, the same input input can result in a

different output at different timesteps. In our case, we consider discrete-time systems, de-

fined by a function f : X → X, with X the configuration space, and the state of the system

evolving from state x ∈ X to f(x+ 1, f(x)) etc.
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It is the presence of cycles in the network that allow these dynamical changes to occur.

In theory, RNNs are capable of ”remembering” input values for some time by preserving

them in some form within the activations of nodes in the network. A properly trained

RNN is capable of learning context sensitive information without having to engineer task-

specific data representations as input to the network (e.g. triphones or n-grams in common

NLP tasks), though these can still be used with RNNs. Additionally, the study of RNNs is

essential to any type of research done on modeling or simulating a human or animal brain.

Figure 2.1 gives a graphical example of a small RNN.

Figure 1.3: Model of a a small Recurrent Neural Network. Image from [18]

Of course, the increased complexity of the network architecture comes at a cost. New

techniques for training have to be devised (see section on Backpropagation Through Time

below), and in practical cases are almost always slower than feedforward network training

algorithms. The universal approximator theorem must be proven again for RNNs. This

important result came in 1991, when Siegelmann and Sontag [19] proved that RNNs, of finite

size and with sigmoidal activation function for the nodes, have the capacity to simulate a

universal Turing machine, confirming the superior computational power of RNNs over simple

feedforward networks.
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Backpropagation through Time

For practical applications, a successful training technique for RNNs has been Backpropaga-

tion Through Time (BPTT), which was independently derived by numerous researchers but

popularized in 1990 by Paul Werbos [20]. It is an adaptation of the well-known backpropaga-

tion training method known from feedforward networks. The feedforward backpropagation

algorithm cannot be directly transferred to RNNs because the error backpropagation pass

presupposes that the connections between units induce a cycle-free ordering. The solution

of the BPTT approach is to ”unfold” the recurrent network in time, by stacking identical

copies of the RNN, and redirecting connections within the network to obtain connections

between subsequent copies. This gives a feedforward network, which is compatible with the

backpropagation algorithm. Figure 1.4 gives a visual explanation of the basic unfolding idea

of BPTT.

In this unfolded, feed-forward network, the weights are identical between the copies. The

forward pass of one training batch consists of stacking a new layer at each timestep, i.e. at

timestep n, the current output f(xn) is computed from the current input xn and the previous

internal state at time n − 1. The classical backpropagation algorithm is straightforwardly

adapted to this unfolded architecture. The teaching data now consists a single input-output

time series. The changes over the tied weights is averaged after each training batch. The

remarks concerning the slow convergence of standard backpropagation carry over to BPTT,

even more so since the size the network grows for every iteration. This has limited the used

of BPTT to small networks, in the order of tens or hundreds of nodes. Another drawback of

this batch training method is that the entire input-output time series must be used, which
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Figure 1.4: Visualization of Backpropagation Through Time unfolding the RNN.
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excludes any kind of online adaptation. A possible solution to both the long computation

time and the need for the entire time series is to truncate the past history and use a only

p past inputs, in effect doing mini-batches of training. However this limits the memory

capacity of network and prevents time dependencies longer than p to be modeled.

The shortcomings of the BPTT algorithm hold for other classical RNN training methods.

• The algorithms are computationally expensive, limiting their use to small networks.

• Gradient-descent methods suffer from vanishing gradients, making it impossible to

guarantee converge. This also leads to dependencies requiring long-term memory be-

coming hard to learn since gradient information exponentially dissolves over time.
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Chapter 2

The Reservoir Computing Paradigm

In 2001 a fundamentally new approach to RNN design and training was proposed inde-

pendently by Wolfgang Maass under the name of Liquid State Machines and by Herbert

Jaeger under the name of Echo State Networks. This approach is now often referred to as

the Reservoir Computing Paradigm. Reservoir computing also has predecessors in compu-

tational neuroscience (see Peter Dominey’s work in section 3.1) and in machine learning as

the Backpropagation-Decorrelation learning rule proposed by Schiller and Steil in 2005 [21].

As Schiller and Steil noticed, when applying BPTT training to RNNs the dominant changes

appear in the weights of the output layer, while the weights of the deeper layer converged

slowly. It is this observation that motivates the fundamental idea of Reservoir Computing: if

only the changes in the output layer weights are significant, then the treatment of the weights

of the inner network can be completely separated from the treatment the output layer weights.

2.1 Reservoir Models

Reservoir computing methods differ from traditional RNN learning techniques by making a

conceptual and computational separation between the reservoir, i.e. the inner neurons and
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weights of the network, and the readout, the neurons and weights that produce the output.

More specifically, in traditional supervised learning the error between the desired output and

computed output will potentially influence the weights of all the network. By contrast, in

the Reservoir Computing paradigm, the error will only influence the weights of the readout

layer. The weights of the reservoirs connections are set at the start of the learning and do

not change. Figure 2.1 give an graphical overview of the reservoir model.

Figure 2.1: Model of a Reservoir Neural Network. Image from Information Processing using
a Single Dynamical Node as Complex System by Appeltant et al. [22]

Despite being a relatively new concept, the reservoir computing paradigm has already been

successfully applied to a range of scientific fields, including but not limited to neurosciences,

speech processing and robotics. See chapter 3 for a review of papers using reservoir comput-

ing. The following sections detail different brands of reservoir methods: Echo state Network,

Liquid State Machines, and other networks that fall into the reservoir category. Most of

these techniques were developed independently and have only been united under the term

reservoir since 2008. Each brand is a specialized version of reservoir computing, with its own

name, history and motivations.
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Echo State Networks

The Echo State Networks (ESNs) method, created by Herbert Jaeger and his team [23],

represents one of the two pioneering reservoir computing methods. Having observed that if

a RNN possesses certain behavioral properties (separability and echo state, see Section 2.2),

then it is possible to achieve high classification performance on practical applications simply

by learning a linear classifier on the readout nodes, for example using logistic regression.

The untrained nodes of the RNN are part of what is called the dynamical reservoir, which

is where the name Reservoir Computing comes from. The Echo State names comes from

the input values echoing throughout the states of the reservoir due to its recurrent nature.

Because ESNs are motivated by machine learning theory, they usually use sigmoid neurons

over more complicated biologically inspired models.

Liquid State Machines

Liquid State Machines (LSMs) are the other pioneer method of reservoir computing, devel-

oped simultaneously and independently from Echo State Networks, by Wolfgang Maass [24].

Coming from a computational neuroscience background, LSMs use more biologically realis-

tic models of spiking integrate-and-fire neurons and dynamic synaptic connection models,

in order to understand the computing power of real neural circuits. As such LSMs also use

biologically inspired topologies for neuron connections in the reservoir, in contrast to the

randomized connections of ESNs. However, creating a network that mimics the architec-

ture of the cerebral cortex requires some engineering of the weight matrix; and simulating

spiking neurons, which are dynamical systems themselves in which electric potential accu-

mulates until it fires leaving a trail of activity bursts, is slow and computationally intensive.
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Both these facts make the LSM method of reservoir computing more complicated in their

implementation and have not commonly been used for engineering purposes.

Other Types of Reservoir Networks

As mentioned previously, the idea of treating the reservoir and the readout layer sepa-

rately was also devised by Schiller and Steil [21]. They proposed an algorithm called

Backpropagation-Decorrelation as a new RNN training method, boasting fast convergence

and good practical results, providing a conceptual bridge between traditional BPTT which

applies weight update to the whole network, and the reservoir computing paradigm which

focus solely on the output layer weights.

We should also mention that Peter Dominey’s was probably the first to properly state

the reservoir computing principles by observing that ’there is no learning (adaptation) deep

within the neural network, and that these connections are randomized (in the pre-frontal

cortex in his case)’ [25]. Dominey called these networks Temporal Recurrent Networks, and

only recently have computational researchers become aware of the similarities with reservoir

networks.

The Reservoir Computing paradigm can be extended beyond neural networks. Taking the

idea of a reservoir and echoes quite literally, an experiment was set up where the inputs were

projected into a bucket of water, and by recording the waves bouncing around the liquid’s

surface, the authors were able to successfully train a pattern recognizer. Another exotic idea

for an untrained reservoir is an E.Coli. bacteria colony, with chemical stimuli as input and

protein measures as output. These experiments show that the reservoir computing paradigm

may be suitable to harness computational power with unexpected hardware material.
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Despite having different names, all the approaches above (ESNs, LSMs, BPDC, Tempo-

ral Recurrent) are now referred to as reservoir computing, and we will be using this term

throughout the rest of the paper.

2.2 Reservoir Computing Theory

While reservoir computing techniques can rely on randomized networks to obtain good per-

formance, there is no guarantee that it is optimal. In fact ’random’ is almost by definition

the opposite of ’optimal’. While no single technique will work for all tasks, some general

rules exist to create reservoirs with good behavior.

Echo State Property

An important element for Reservoir Computing to work, coming from the ESNs approach, is

that the reservoir should have the echo state property. This condition in essence states that

the effect of a previous state and a previous input on a future state should vanish gradually

as time passes, and not persist or worse, get amplified. For practical purposes, the echo

state property is assured if the matrix W of reservoir weights is scaled so that its spectral

radius ρ(W ) (i.e., the largest absolute eigenvalue) is close to or inferior to 1. Intuitively, the

spectral radius is a crude measure of the amount of memory the reservoir can hold, the small

values meaning a short memory, and the large values a longer memory, up to the point of

over-amplification when the echo state property no longer holds. Since one incentive to use

RNNs is their capacity to have a memory of the inputs, it is important that any method

that guarantees the echo state property does not reduce the memory capacity to nothing.

A practical test to measure this memory capacity is: can the reservoir output recreate the
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input, with a k steps delay?

Separability Property

Another important aspect of good reservoirs is the capacity to separate two different inputs,

i.e. two different input signals should not have the same output signals. A good heuristic

measure of a reservoir’s separability power is to compute the distance between different states

caused by different input sequences. One method of achieving good separability is to make

the matrix defining the network connections sparse, making the activation signals within the

network decoupled from each other. Larger networks also lead to more varied activations,

and higher separability power.

Topology

The question as to what is the best way to arrange the neurons in the network is still an un-

resolved one. A larger number of neurons in the network will mean more activation signals,

allowing for finer grain classification and higher performance (see [26] for an example on how

size can improves performance). But, concerning the particular topology of the network, it

has been noted that there is substantial variation in ESN performance among randomly cre-

ated reservoirs [27]. After all randomness is almost by definition the opposite of optimal. As

mentioned previously, a sparse matrix helps with the performance, but the optimal topology

for a reservoir network remains unknown. In a 2004 study [28], different possible topologies

were tested, such as scale-free, small world or biologically inspired. Scale-free and small

world networks are both widely studied graph topologies that are frequently observed in na-

ture. However, none tested to ”perform significantly better than simple random networks”

on two dynamical system prediction tasks. Still the difference in performance amongst these
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random networks indicates that similar approaches might be useful.
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Chapter 3

How the Reservoir Computing
Paradigm is used

The universality of the reservoir computing paradigm has lead to its application in a diversity

of scientific fields. Since 2009, over a thousand papers have been published on the subject

[29]. Among these fields are computational neuroscience [30, 31, 32, 33], reservoir computing

theory [34, 35, 36, 37], speech processing [26, 38, 39] and physical implementation [22, 40,

41]. This survey focuses on a select few of these papers with the goals of showing the

diversity of reservoir computing applications and discussing the strength and weaknesses of

these approaches. Lastly, a quick review of a similar randomized network technique, named

Extreme Learning Machines [42, 43], will be given to show the broad scope of the random

network principle of reservoir computing.

3.1 Neuroscience

Usage of the Reservoir Computing paradigm in the sciences at large can be classified in two

broad categories: use as a powerful machine learning tool, or use as a biologically feasible

mechanism.
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In research that predates the formulation of the reservoir computing paradigm, Dominey

et al. [44, 45] argue that the brain exhibits reservoir-like processes, i.e. random connection

between neurons and linear or simple learning on only the output layer. The learning algo-

rithm described by Dominey is a version of the Least Mean Squares algorithm, in which the

output weights are updated by gradient-descent in order to minimize the mean square of the

error.

Continuing in this vein of research, in 2011 Nature Neuroscience published a paper by

Bernacchia et al [31] which shows how the brain could predict expected rewards over multiple

timescales by processing the available information through a reservoir network. By measuring

the activity of cortical neurons in monkeys performing a gaming task of matching pennies,

the authors observed that some neurons firing indicated that the monkey expected a reward

immediately, while others indicated an expected reward in the more distant future. The

timescale of these neuronal responses ranged from hundreds of milliseconds to tens of seconds.

To replicate this phenomenon, the authors implemented a reservoir neural network of 1000

neuron,a similar size to that measured on the animals. The activity of neurons evolves

according to dv
dt

= J · v(t) + h · Rew(t) where v is the vector of neuron activity, J is the

synaptic connectivity matrix of their interactions and his a vector representing the relative

strength of the reward input Rew(t) to each neuron. The matrix J of the connection weights

was created to be sparse and random. By broadly distributing the connection weights,

the authors allows the network to respond to inputs on a wide variety of timescales. In

addition, the connection matrix was made to be normal (J∗J = JJ∗). This ensures [46]

that the network dynamics are robust to small changes of the connection strengths. It
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was then observed that the activity of neurons in the reservoir displayed similar patterns

that observed on live monkeys. The paper concluded that animals may be able to process

information on multiple timescales thanks to the reservoir’s recurrent network capability to

maintain multiple memory traces at once.

Partnering with Dominey, the recent work of Hinaut et al. [32, 33] also uses reservoir

computing as a explanation to a biological process. Hinaut explores how language is learned,

working at the frontiers of neuroscience, natural language processing and robotics. In the

paper from May of 2014 [33] Hinaut and his colleagues argue in that human language can be

learned through general associative mechanisms in a stimulus rich environment, in contrast

to the Chomsky’s innatism that believes that the child’s stimulus environment is too poor

and that language can only be learned via a highly specialized universal grammar system.

The authors aim to show child’s social environment contains enough non-linguistic informa-

tion that help with the acquisition of phoneme, word, sentence meaning. Through simple

interactions with an iCub robot, they showed that the robot is not only capable of learning

the grammatical structure of sentences, but also able to produce sentences describing the

human’s actions. For those two tasks, comprehension and production, the neural language

model they used was a random reservoir network with bio-inspired neurons. The reservoir

is modeled after the human prefrontal cortex: the reservoir corresponds to the cortex, and

the readout layer corresponds to the striatum. The reservoir is composed of leaky neurons

with sigmoid activation. The following equation describes the internal update of activity in

the reservoir: x(t + 1) = (1α)x(t) + αf(Wresx(t) + Winu(t + 1)) where x(t) represents the

reservoir state at time t; u(t) denotes the input that time;α is the leak rate; and f is the
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hyperbolic tangent (tanh) activation function. Win is the connection weight matrix from in-

puts to the reservoir and Wres represents the recurrent connections between internal units of

the reservoir. The readout activity is defined by the weight matrix Wout which is multiplied

to x(t). This readout matrix was trained by linear regression with bias and pseudoinverse

method described by Jaeger in 2001 [23]. The results of these experiments is a robot capable

of learning that sentences like ”John hit Mary” and ”Mary was hit by John” have the same

meaning and same grammatical structure: agent(John), object(Mary), predicate(hit).

3.2 Machine Learning

The reservoir computing paradigm is general and powerful enough to also be applied as

tool, rather than as an explanation for natural phenomena. In 2012 Oubbati et al. [37]

adapted the reservoir paradigm to multi-objective problems, in which more than one ob-

jective function need to be optimized together. These types of problems are perhaps more

naturally occurring than single-objective problems, after all most human decision need to

balance multiple goals, for example social/economic, speed/quality. Unfortunately multi-

objective problems are also much harder, if not impossible to solve exactly, since the size of

all the Pareto (non-dominatied) optimal solutions is potentially infinite. In this paper, the

authors apply the reinforcement learning framework to the multi-objective problematic, and

use a technique called Adaptive Dynamic Programming (ADP) [47], which was developed

to solve one of the commons pitfalls of multi-objective reinforcement learning algorithms,

the curse of dimensionality. The ADP tool approximates the expected reward using a sys-

tem called ’Critic’. The reward can be seen as the agent’s preference over the objectives,
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and the expectation is the agent’s belief related to how actions impact outcomes. The au-

thors state that the critic is usually a neural network, and requires powerful computational

tools to be effective. This is where the reservoir computing paradigm becomes useful. The

reservoir estimates several rewards simultaneously and provides their gradients, which are

required for the agent to adapt its behavior to the multiple objectives, while being a lot less

computationally intensive than traditional neural networks, since reservoir only optimized

the output layer of the network. The authors test their hypothesis by implementing this

Reservoir-Computing-ADP in a simulated environments, in which an agent must balance

three different objective functions. It was shown that the agent was able to estimates several

utilities simultaneously, reaching different Pareto optimal solutions depending on how the

objectives were weighted.

3.3 Speech Processing

One of the attractive traits of recurrent neural networks is their capacity to process temporal

information. One domain where such temporal information is important is in speech pro-

cessing. For example, for an automatic speech recognizer to work properly, a sound uttered

at time t will influence the recognition probabilities of phonemes both before and after. To

allow traditional feed-forward networks to process these temporal dependencies, solutions

such as ’context-dependent’ phones and N-grams have been engineered. An N-gram is a

contiguous sequence of n items extracted from text or speech. These can be phonemes,

syllables, letters or words depending on the task. Feeding these N-grams into a feedforward

network allows it to process some contextual information. However the range of the context
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is fixed by preprocessing of the data, and cannot be learned by network. More generally, to

avoid the the ’curse of dimensionality’, it is assumed that the simplifying Markov property

holds, i.e.that future states only depend on the near past.

The memory capacity of RNNs allows reservoir networks to store this information and

use it without needing preprocessing, though it certainly is compatible with such techniques.

In the field of natural language processing, reservoir computing research has been led by B.

Schrauwen and Jean-Pierre Martens of Ghent University. Amongst the many papers pro-

duced by the group ([48, 49]), an important one for the popularity of the reservoir computing

paradigm in the speech recognition domain was published in 2010 by Triefenbach, Jalalvand

and the aforementioned Schrauwen and Martens [26]. This particular paper explores the

task of continuous phoneme recognition on the popular TIMIT dataset [50], with the goal

of comparing the performance of single a reservoir network against the novel hierarchical

reservoirs architecture, as shown in figure 3.1.

Figure 3.1: The reservoir architecture proposed by Treifenbach et al. Image from [26]

The authors argue that additional reservoirs can correct some of the errors made by the

previous reservoir. And indeed, in their implementation they observed that the second layer

induces a significant improvement of the correction error rate by 3-4%. They also observed

that additional layers beyond the second only provided minimal gain. The overall perfor-
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mance of reservoir networks for the task was comparable to other state of the art systems

such as Hidden Markov Models and Deep-Belief nets.

3.4 Physical Implementation

If reservoir networks are to be used in practical applications, implementing them using dedi-

cated hardware would further improve the computational speed of the system over traditional

RNNs optimization methods. In recent work published by Nature, Appeltant et al. [22, 41]

explore this challenge, with feasibility, performance and resource-efficiency in mind. The

authors note that implementing a randomized network architecture, the type of reservoir

that is usually coded in simulations, would be a difficult task in hardware. Many compo-

nents would be needed, one for each reservoir neuron, and the construction process would

have to adapt itself every time a new random architecture was devised. In addition to the

construction difficulties, not all random networks are efficient, as discussed under Topology

in section 2.2, leading to potentially wasted material. To answer these problems, the authors

propose to implement a reservoir computer in which the usual reservoir structure of multiple

connected nodes is replaced by a dynamical system comprising a nonlinear node subjected to

delayed feedback. The delayed feedback creates multiple values that act as ’virtual nodes’,

whose values are connected to the readout layer, and whose connecting weights are trained

using standard reservoir computing procedures. Figure 3.2 gives an overview of the proposed

reservoir computer architecture.

For the non-linear node, the authors chose the Mackey-Glass oscillator whose stateX evolves

according to Ẋ(t) = −X(t) + η·[X(t−τ)+γ·J(t)]
[1+X(t−τ)+γ·J(t)]p with η, γ, p tunable parameters. J(t) is the
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Figure 3.2: Scheme of the Reservoir Computer proposed by Appeltant et al. Image from
[22]

output of the mask, a preprocessing of the input, where τ is the delay of the feedback loop,

θ is τ
N

with N the number of virtual nodes.

The authors tested the validity of this model on two tasks, a spoken digit recognition

task and the NARMA task introduced in [51] which has become a benchmark for reservoir

computing (see [52] for an example). On both the performance is close to or better than

that obtained previously with traditional, fully randomized reservoir networks, indicating

the potential of this approach.

3.5 Other Randomized Networks

It should be noted that the idea of treating the readout layer separately from the network has

also been applied to more traditional feed-forward networks. Under the name of ’Extreme

Learning Machines’ (ELM), Huang et al. [42, 43] developed a tool very similar to the basic

theory of reservoir computing. The weights of the hidden layers of a feedforward network

can be randomized, and with proper training of the output weights, good results can be

obtained. The authors proves several theorems concerning these ELMs, notably that they are
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universal function approximators. Toy problems such as noisy function approximation, and

real world tasks such as automated medical diagnostic prediction are tackled with success,

comparing favorably to traditional feedforward techniques like backpropagation or support

vector machines, showing the promise of the Reservoir / ELM approaches to neural network

machine learning, with ELM learning non-temporal classifiers and reservoirs approximating

dynamical systems with temporal dependencies.
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Chapter 4

Conclusion and Future Work

The reservoir computing paradigm has already proven itself as a powerful tool in numerous

scientific domains, both at an biological explanation of animal neural processes, and as a

computational tool in tasks requiring complex temporal information processing.

4.1 Conclusion

In conclusion:

• The simple reservoir computing paradigm states that recurrent neural networks can

be efficiently trained by optimizing only the weights connected to the output neurons,

leaving the weights of internal connections unchanged.

• The reservoir computing paradigm offers a theoretically sound approach to modeling

dynamical systems with temporal dependencies.

• The paradigm also promises to be much more computationally efficient than traditional

RNN approaches that aim at optimizing every weight of the network.

• Reservoir computing techniques have successfully been applied to classical artificial

intelligence problems, providing state-of-the-art performance on engineering problems,
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and offering explanations on biological brain processes.

Despite these advances, reservoir computing is still a new research topic. Because the

paradigm is so general, many options are available to research: the type of neuron, the

architecture of the network, the training method for the output weights; no consensus exists

and is most certainly task-dependent. It also remains to be seen if the paradigm can be

applied to large-scale technological ventures, as currently only a small number of research

groups are working with reservoirs. Today neuro-scientists focus on which parts of the brain

display reservoir-like patterns and how to model these parts; while computational scientists

apply the paradigm to new technical fields, exploring and optimizing the different options

mentioned above.

4.2 Future Work

As a member of the Speech Lab @ Queens College [53], my work centers on computational

speech analysis, with a focus on understanding how prosody and intonation communicate

information. As an NSF IGERT [54] fellow, I am also interested in multi-disciplinary work,

possibly working with biomedical data. The reservoir computing paradigm in its general

classification power is well adapted to multi-disciplinary work.

I have already explored toy problems using reservoir networks, implemented using the

OGER [55] Python toolbox. Figure 4.1 shows my results on a simple task of replicating a

noisy input with a time delay of 5 steps, which even a small reservoir is capable of doing

perfectly, showcasing the memory capacity of the paradigm.
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Figure 4.1: Results of a simple 50 neuron random reservoir on a toy task. Note: the results
are artificially worsened for visualization purposes
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