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Abstract
In this paper, we compare three systems using phonotactic fea-
tures (two of them novel) against an equivalent i-vector system
and an equivalent voice quality system for language identifica-
tion. We demonstrate that systems built on phonotactic features
exhibit good prediction performance while maintaining equiva-
lent or better metrics with respect to resource consumption.
Index Terms: Language Identification, Phonotactic Modeling

1. Introduction
Automatic language identification of speech is the process by
which the language or dialect of an utterance is automatically
recognized by a computer. This task has broad applicability,
including areas such as automatic speech recognition, multilin-
gual translation systems or even emergency call routing, where
the response time of a fluent native operator could be critical.
Some of the most efficient approaches to language recognition
have relied on language dependent phone models, which are
largely based on the assumption that phonotactic constraints
contain enough information to identify the language. These ap-
proaches have borrowed inspiration from linguistic theory. To
linguists, differences in the number of sounds that exist in a
language and how these sounds can be combined are extremely
important clues to identifying a particular language or distin-
guishing between two similar languages. Even if we consider
geographically close languages, language families, or dialects
of the same language we find great variation across phonemic
inventories. For example, Mandarin Chinese has a relatively av-
erage size consonant inventory (22 ± 3). However, the dialect
Wu, spoken in southeast China, differs from Mandarin Chinese
in preserving initial voiced stops (sounds formed with complete
closure in the vocal tract), leading it to have a larger consonant
inventory [1].

Accordingly, language identification systems have lever-
aged this linguistic knowledge and have built systems that rely
heavily on phonemes. After many formal evaluations [2, 3, 4],
research suggests that one successful approach to automatic lan-
guage identification involves using phonotactic content of the
speech signal to discriminate among a set of languages. In these
approaches, phone recognizers are used to tokenize speech into
phone sequences, which are then modeled using statistical lan-
guage models, i.e. phone recognition followed by language
modeling (PRLM) [5]. This work explores how to exploit and
best leverage the output of phone recognizers. We do so by
building multiple models, which each employ recognizer out-
put in distinct ways. Our phone-based models include: a Phone-
mic Inventory model, a Parallel Phone Recognition to Language
Model, and a Phone Variation model. We contrast our phone-

based models with equivalent systems built on acoustic features
on the basis of accuracy and speed.

2. Related Work
Starting at least as far back as 1995, phonotactic approaches
took advantage of distributional differences in phonology and
became perhaps the most widespread state of the art technique
for language (and dialect) detection [6]. This class of techniques
has been used to distinguish between dialects [7] among several
Arabic dialects [8], between two Spanish dialects [9] and among
three Chinese dialects [10].

The PRLM approach [5, 8, 11] is a pipeline which starts
with individual (vowel/consonant) phone recognition (PR) from
an acoustic signal. During training, the output of this recogni-
tion is used to build an n-gram (language) model (LM) which
captures the phonotactic probability distributions of the lan-
guage/dialect. During testing, the output is used to compare
against existing models, the most likely of which becomes the
hypothesis for the label of the language or dialect. PRLM has
an effective variant in which multiple parallel phone recogni-
tion systems, each trained on different languages or dialects,
are used in parallel, with the output hypotheses of those sys-
tems combined with a classifier for final prediction [8].

Chen et al. [12] claim that phone recognizers fail to cap-
ture acoustic differences across dialects, such as the retroflex
/d/ common in Indian dialects of English. To account for
this, parallel PRLM, can be employed PRLM in multiple lan-
guages to tease out pronunciation differences among dialects.
The “marry-merry-Mary merger” is an example: though most
speakers of Standard American English hear these as homo-
phones, some speakers in New England produce a distinct
sound for each [13]. This distinction would be “inaudible” to
a PRLM system built on Standard American English; however,
other languages, and perhaps other dialects of English, may be
sensitive to the distinction and therefore to the linguistic sub-
culture from which the sounds are produced. Biadsy [14] pro-
posed discriminative phonotactics as a method for handling the
differences in phone realizations across languages. Under this
technique, a system uses Gaussians’ fit to the phone hypothe-
ses from different languages to determine whether each phone
is pronounced differently.

After more than a decade of the use of phonotactic ap-
proaches, the i-vector approach was proposed as a method for
speaker diarization [15] as well as language identification [16].
The i-vector approach works by creating a “Universal Back-
ground Model” (UBM), m, representing the total variability of
all speaker utterances in a supervector – a set of stacked mean
vectors from a Gaussian Mixture Model (GMM) [17]. Each
speaker utterance, M, can be described by the UBM, by a ma-



Figure 1: LRE15 Languages and Language Families.

trix of features, T and a vector representing the identity of the
speaker – the i-vector – w, all described in by (1). In language
identification, it has been common to create a model for each
language rather than each speaker, in [18] for example.

M = m+ Tw (1)

Several improvements have been suggested to the i-vector
approach. For example, Shum et al. (2013) [17] describes a
multi-step approach of post-processing i-vectors to derive the
gender of the speakers. In this approach, Principal Components
Analysis (PCA)-based projection is applied as a proportion of i-
vector dimension. K-means clustering is applied to the output of
this step based on cosine distance. (In this work, K was set only
to 2 for the purpose of bifurcating gender. Additional refine-
ments were applied to generate better segmentation for speaker
diarization; these are omitted here.)

Our work borrows from and builds upon many of these ex-
isting approaches. Collectively, we implemented five differ-
ent approaches, two of them novel: (1) a low-level acoustic-
prosodic approach with a large set of acoustic features, (2) a
novel phonemic inventory approach inspired by the PRLM ap-
proach [9], (3) a PPRLM approach [9], (4) a novel variation of
the phonotactic approach described in [14], and (5) an i-vector
approach [15, 16].

3. Data
For data, we used the training portion of the 2015 NIST Lan-
guage Recognition Evaluation Plan (LRE15) corpus. This data
was drawn from telephone and broadcast speech (“conversa-
tions”) in 20 languages, each of which was assigned to one of
6 language families [4] due to the intra-family confusability of
the languages. Languages and language families are shown in
Figure 1 according to the stated or historical geographic origin
of the language. All speech segments were provided in 16-bit,
8kHz linear PCM format in SPHERE file format.

We randomly held out 10% of the material for testing, with
a minimum of one broadcast or telephone conversation per lan-
guage. Hereinafter, we refer to this held out portion as the “de-
velopment (dev) set.” The remaining portion of the material was
reserved for training our models as described in the following
section.

Note that the LRE15 corpus also contains a separate test
portion, sometimes recorded under different conditions in com-
parison to the training material. However, because the language
labels for that portion of the corpus were not provided by the

time of the writing of this work, we were unable to use that por-
tion for all experiments. We do consistently report metrics on
the development set, as described in Section 5.

4. Systems
We experimented with a total of five systems: one system built
exclusively on comparatively low-level acoustic-prosodic fea-
tures, three phonotactic systems of varying complexity and one
system which used i-vectors. Each is described in this section.
Across all systems, we used the entire contents of the conver-
sation to produce a single prediction from one of our 20 lan-
guages. We did this to perform a fair comparison among these
systems.

4.1. Low-Level acoustic-prosodic System

The Low-Level acoustic-prosodic System used approximately
6,373 “low-level” acoustic-prosodic features as described by the
Interspeech 2013 COMPARE Challenge [19], extracted with
OpenSMILE [20] using the baseline challenge configuration.
Some of the low-level acoustic-prosodic system features in-
clude pitch (fundamental frequency), intensity (energy), dura-
tion, voice quality (jitter, shimmer, and harmonics-to-noise ra-
tio). In two subsequent cases (the i-vector system and the Phone
Variation system), we used MFCC features, which are a subset
of the features in this system.

We trained models to hypothesize one of the 20 languages
for which we had data and used the Weka [21] SMO classifier
to generate language hypotheses from these features. All weka
parameters were kept at their default values. We did not expect
this system to outperform our phonotactic or i-vector systems,
but we wanted to establish a baseline for good performance on
this task on all our metrics (accuracy, confidence and resource
consumption).

4.2. Phonotactic Systems

We created a total of three phonotactic systems of varying com-
plexity. These systems targeted the different distributions and
realizations of vowels and consonants for the different lan-
guages. To the best of our knowledge, our work is the first one
that utilize phonemic inventory features, and our phone varia-
tion features are a unique variation of discriminative phonotac-
tics. All of our phonotactic systems are built on phone hypothe-
ses produced by the BUT phoneme recognition (PhnRec) tool
[22], which supports four languages: Czech, English, Hungar-
ian and Russian. We generate four language phone hypothe-
ses using the trained model in PhnRec, and filter all the non-
speech tokens(’oth’, ’pau’, ’sil’,’spk’,’int’) before feeding the
transcripts to each system independently. The output of the Ph-
nRec tool consists of phone hypotheses, durations and confi-
dence scores; however, not all of these outputs were applied to
each system.

4.2.1. Phonemic Inventory System

This system used 196 phoneme-based features. Using the Ph-
nRec tool, we derived the features detailed in Table 1. For
consonant types (C-Type) features, we tagged each consonant
phone according to the following: affricates, fricatives, glottal
stops, sonorants, and stops. These consonant types were de-
termined using the Speech Assessment Methods Phonetic Al-
phabet (SAMPA) [23]. As with the above system, we used the
Weka [21] SMO classifier (default parameters) to generate lan-



guage hypotheses from these features.

Table 1: Phonemic Inventory Features.

Feature Class Feature Detail / Example
Inventory Vowels Unique number of vowels

Consonants Unique number of
consonants

C/V Ratio Consonant to vowel ratio
C-Type Ratio Frequency by consonant type

Duration Mean Mean duration per phone
Max Maximum duration per phone
Min Minimum duration per phone
Stdev Standard deviation of

duration per phone
Variance Duration variance per phone
C-Type Dur. Mean duration per consonant

type
Confidence Avg Mean confidence score per

phone
C-Type Con. Mean confidence score per

consonant type

4.2.2. Phone Recognition and Language Modeling (PRLM)

First, we used the PhnRec tool to extract phone hypotheses as
described earlier. For each of the 20 languages to be identified,
we trained four 3-gram phoneme language models with Witten-
Bell smoothing based on different phoneme hypotheses, using
the SRILM toolkit [24].

This resulted in a total of 80 perplexity scores (2) as fea-
tures.

10
− logprob

#(words) (2)

We then employed the Weka [21] SMO classifier to generate
predictions from these features. Based on experiments per-
formed on a held-out portion (13.5%) of the training material,
we tuned the complexity parameter of SMO to 1000. All other
parameters were kept at their default values.

4.2.3. Phone Variation System

This system used MFCC vectors (“raw”), their deltas (delta) and
their double deltas (double-delta) as derived by OpenSMILE
[20]. For each set of phoneme hypotheses as derived by the Ph-
nRec tool as described above, the raw, delta and double-delta for
MFCC vectors were determined and the following calculations
were extracted as a total of 195 features:

• Min: Minimum for each MFCC[0..12] vectors

• Max: Maximum for each MFCC[0..12] vectors

• Mean: Mean for each MFCC[0..12] vectors

• Variance: Variance for each MFCC[0..12] vectors

• Stdev: Standard deviation for each MFCC[0..12] vectors

This system draws inspiration from discriminative phonotactics
which combines features drawn from phone hypotheses with
low-level MFCC features. However, our Phone Variation com-
bines these features in different ways. Specifically, the output
of this system was designed for faster calculation with a pos-
sible trade-off of being less accurate. We used the Weka SMO
classifier to generate language hypotheses from these features.
All parameters were kept at their default values.

4.3. i-vector System

Motivated by Joint Factor Analysis [25, 26], i-vector modeling
was originally proposed in [16], showing the success of imple-
menting an i-vector framework for language recognition. The
i-vector exploits the concept of “total variability. It improves
upon factor analysis by estimating a single low-dimensional
subspace (i-vector space) where all variability is modeled, lead-
ing to improved accuracy and reduced computational complex-
ity. Previous work exploited this framework to model speaker-
specific variability; we develop a technique based on i-vectors
to model the variability. This system used the Alize toolkit [27]
to generate predictions for the held-out development set built
from the training portion of the corpus. For each of the 20 target
languages, a single speaker model was built from all conversa-
tions in training portion. All other parameters for Alize were
kept at their default values.

5. Results
For each system, we report three metrics: the accuracy of lan-
guage prediction on our held-out development set, the Cllravg

of the language prediction on the held-out development set and
the resource consumption (speed and memory usage) of the
systems while building models and making predictions. We
were also able to report the performance of some models on
the LRE15 test set using the Cllravg metric. The Cllravg met-
ric is the LRE15 shared-task metric [4]. As such, this is the
only evaluation measure available for the test partition of the
data. The majority of our systems output a probability distribu-
tion over the 20 language families. We then select the highest
probability across the set as the language prediction. From these
predictions, we report accuracy on a held-out development set.
Accuracy represents our first metric. In addition to accuracy,
we calculate the Cllravg on the development set for each sys-
tem. This metric represents a mixture of the accuracy of the
prediction within a language family as well as the confidence in
that prediction. More accurately, it is defined in [28] and used
in [29] as the expected cost of the prediction. The Cllravg met-
ric is calculated as shown in (3), where NL is the number of
languages in the language family cluster.

Cllravg =
1

NL
∗
∑
LT

[PTarget ∗ Ctar
llr (LT )

+
∑
LN

PNon−Target ∗ Cnon
llr (LT , LN )] (3)

Most of our systems use the Weka tool, which produces predic-
tions for each language in forms of probabilities. For Cllravg ,
these probabilities needed to be converted to log likelihood ra-
tios.

5.1. Re-scaling

In order to compare our systems’ performance to other LRE15
participants [30], we chose to incorporate the Cllravg metric.
Although, in some of our experiments we faced some issues
regarding our predictions and the nature of the Cllravg metric.
For example, if the system did not make any predictions above
the 0.5 threshold, the metric treats the system as if no predic-
tion is being made. Because the evaluation method only looks
at pairs of languages within the same family, and because the
evaluation uses a hard threshold on the likelihood ratios, we de-
cided to re-scale the Weka predictions first. To re-scale, each



Figure 2: Experimental Results.

prediction probability was normalized such that within a lan-
guage family, each language probability summed to one. This
conditioned each language prediction probability to the clus-
ter in which that language belongs. These probabilities were
then converted to log likelihood ratios, with an equal prior for
each language class. Re-scaling was performed for the Parallel
PRLM and Phonemic Inventory systems prior to testing on the
test set. As can be seen in Table 2, the Parallel PRLM and the
Phonemic Inventory systems were performing at random on the
development set. We hoped to mitigate this issue through re-
scaling. We note that re-scaling seemed to mitigate the issue we
faced with the Cllravg metric, improving performance for the
Parallel PRLM and the Phonemic Inventory systems on the test
set.

Table 2: Performance of Language Prediction Systems. The
Phone Variation and i-vector systems were not included in our
submissions for the LRE15 shared-task, therefore the perfor-
mance for those systems are listed as N/A.

Accuracy Cllravg Cllravg

System (dev) (dev) (test)
Low-Level System 0.8312 0.1637 0.4863

Phonemic Inventory 0.7572 0.5000 0.4819
PRLM 0.7967 0.5000 0.4735

Phone Variation 0.8937 0.5000 N/A
i-vector – 0.5109 N/A

5.2. Resource Consumption

The last metric considered is resource consumption. Each of our
systems was executed on a different set of machines. The gen-
eration of phone hypotheses was performed on a 128-processor
Intel Xeon system (each 2.8GHz) with 64GB RAM. All other
portions of the system were executed on different 8-processor
Intel Xeon system (each 3.0GHz), each with 12GB RAM. All
systems ran Ubuntu 15.04. In addition to speed, we report the
peak memory usage of each system, all of which occurred dur-
ing the model building phase. We report the User Time for each
overall system as well as peak memory usage and for each sys-
tem on Table 3.

We provide these metrics with the caveat that wall clock
timing and memory usage are very unstable measures. These
times are extremely sensitive to even minor changes in architec-

tures and load. Differences of less than an order of magnitude
are likely insignificant. Comparisons between systems based on
these numbers should be performed with this in mind.

We define the speed of language recognition as the sum of
the duration of the speech for each conversation in the test por-
tion of the LRE15 corpus divided by the total user CPU time.
This is shown in Figure 2. We also provide the total (wall clock)
time in Table 3, alongside peak memory usage, for reference.

Table 3: Resource Consumption.

User Time Peak Memory
System (seconds) Usage (MB)

Low-Level System 127,438 1703.68
Phonemic Inventory 14,748 1213.30

PRLM 266,370 2226.92
Phone Variation 82,841 1495.53

i-vector 767,712 5986.39

5.3. Discussion

While all system performed well, as can be seen from the results
in Figure 2, the overall trend for all systems appears to trade
speed for accuracy in performing language identification. The
fastest of the systems, Phonemic Inventory, is also the system
with the lowest accuracy, albeit with surprisingly high Cllravg

performance. Likewise, the slowest and most memory-intensive
system, parallel PRLM, is also the one with the highest accuracy
and lowest cost as measured by Cllravg .

We observe that our implementations of the phonotactic
systems exhibit relatively high costs (all with Cllravg = 0.5000)
but also with relatively high accuracy. However, the most inter-
esting of the results could be the stellar performance of the low-
level acoustic-prosodic system and the mediocre performance
of the i-vector system. This is especially noteworthy given the
popularity of systems based on i-vectors in the last few years.

6. Conclusion and Future Work
While the amount of memory required to perform language
recognition is relatively consistent across the systems we imple-
mented, one of the more striking observations from this work
may be that the speed of language recognition varies widely
enough to be noticed even with the caveats we mentioned. The
Phonemic Inventory system is faster than all others by an order
of magnitude, for which the trade-off is a small sacrifice in ac-
curacy. Other phonotactic systems and our i-vector system all
exhibit relatively similar performance with respect to speed and
memory consumption. In short, where speed is a factor in lan-
guage identification, one based on Phonemic Inventory features
would be very useful. We also believe that phonotactic systems
can be robust with respect to channel differences. Interestingly,
we find that although i-vector approaches are currently included
in many state of the art approaches to language identification,
when used as a stand alone system do not outperform the phone
based systems. In our future work, we aim to build systems
which use phonotactic features as input and have architectures,
perhaps inspired by the i-vector framework, which can exploit
these inputs to the fullest. We also plan to evaluate these sys-
tems on dialect recognition tasks.
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