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ABSTRACT
Recent works have shown that Deep Recurrent Neural Networks

using the LSTM architecture can achieve strong single-channel
speech enhancement by estimating time-frequency masks. How-
ever, these models do not naturally generalize to multi-channel
inputs from varying microphone configurations. In contrast, spa-
tial clustering techniques can achieve such generalization but lack
a strong signal model. Our work proposes a combination of the
two approaches. By using LSTMs to enhance spatial clustering
based time-frequency masks, we achieve both the signal model-
ing performance of multiple single-channel LSTM-DNN speech
enhancers and the signal separation performance and generality of
multi-channel spatial clustering. We compare our proposed system
to several baselines on the CHiME-3 dataset. We evaluate the qual-
ity of the audio from each system using SDR from the BSS eval
toolkit and PESQ. We evaluate the intelligibility of the output of
each system using word error rate from a Kaldi automatic speech
recognizer.

Index Terms— Speech Enhancement, Microphone Array,
LSTM, Spatial Clustering, Beamforming

1. INTRODUCTION

With speech recognition techniques approaching human perfor-
mance on noise-free audio with a close-talking microphone [1],
recent research has focused on the more difficult task of speech
recognition in far-field, noisy environments. This task requires
robust speech enhancement capabilities.

One approach to speech enhancement is spatial clustering,
which groups together spectrogram points coming from the same
spatial location [2]. This information can be used to drive beam-
forming, which linearly combines multiple microphone channels
into an estimate of the original signal that is optimal under some
test-time criterion [3]. This optimality is typically based on prop-
erties of the signals or the spatial configuration of the recordings at
test time, with no training ahead of time.

Another approach is to use a signal models trained using neu-
ral networks. Recent work on deep recurrent neural networks us-
ing the LSTM architecture [4] can achieve significant single-channel
noise reduction [5, 6], and so there is interest in using trainable deep-
learning models to perform beamforming. This is especially useful
for optimizing beamformers directly for automatic speech recogni-
tion [7, 8], although such optimization must happen at training time
on a large corpus of training data. Such models have difficulty gen-
eralizing across microphone arrays, including differences in number
of microphones and array geometries, such as occurs between the
AMI corpus [9, 10] and the CHIME challenge [11].

In contrast to deep learning-based beamforming, spatial cluster-
ing is an unsupervised method for performing source separation, so
it easily adapts across microphone arrays [12, 13, 14]. Such methods
group spectrogram points based on similarities in spatial properties,
but are typically not able to take advantage of signal models, such as
models of speech or noise.

Developed by Mandel et al. [12], Model-based EM Source Sep-
aration and Localization (MESSL) is a system that computes time-
frequency spectrogram masks for source separation as a byproduct
of estimating the spatial location of the sources. It does so using
the expectation maximization (EM) algorithm, iteratively refining
the estimates of the spatial parameters of the audio sources and the
spectrogram regions dominated by each source.

While MESSL utilizes spatial information to separate multiple
sources, it does not model the content of the original signals. This
is an advantage when separating unknown sources, but performance
can be improved when a model of the target source is available. The
goal of this paper is to augment the capabilities of MESSL by adding
a speech signal model based on neural networks trained to enhance
the masks produced by MESSL.

In this paper we describe a novel method of combining single-
channel LSTM-RNN-based speech enhancement into MESSL. We
train a distinct LSTM model that uses the single-channel noisy au-
dio to enhance the masks produced my MESSL. To show how these
methods enhance the speech of the CHiME-3 outdoor 6-channel au-
dio, compared to baselines, we report the enhancement performance
measured by PESQ score [15], the SDR, SIR, and SAR scores from
BSS Eval toolkit [16], as well as the WER as reported by the Kaldi
toolkit [17] trained on a separate corpus, the indoor 8-channel AMI
corpus.

2. RELATED WORK

Recently, Nugraha et al. [18] also studied multi-channel source
separation using deep feedforward neural networks, using a multi-
channel Gaussian model to combine the source spectrograms, to take
advantage of the spatial information present in the microphone array.
They explore the efficacy of different loss functions and other model
hyper-parameters. One of their findings is that the standard mean-
square error loss function performed close to the best. In contrast to
our work they do not use spatial information that beamforming can
give.

Pfeifenberger et al. [19] proposed an optimal multi-channel fil-
ter which relies solely on speech presence probability. This speech-
noise mask is predicted using a 2-layer feedforward neural network
using features based on the leading eigenvector of the spatial co-
variance matrix of short time segments. Using a single eigenvector



Table 1. Training Targets and their Associated Loss Function

Training Targets Loss Functions

Ideal Amplitude (IA) Masks mia(ω, t)= |s(ω, t)|/|y(ω, t)| Binary Cross Entropy
Phase Sensitive (PA) Masks mps(ω, t)= cos(θω,t)

|s(ω,t)|
|y(ω,t)| Binary Cross Entropy

Magnitude Spectrum (MS) Approximation mma(ω, t)= |s(ω, t)| Mean-Squared Error
Phase-sensitive Spectrum (PS) Approximation mpa(ω, t)= cos(θω,t)|s(ω, t)| Mean-Squared Error
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Fig. 1. Multi-channel Spatial Clustering Based Time-Frequency Mask Enhancement System

makes the input to the DNN independent of the number of micro-
phones, and thus adaptable to new microphone configurations. It is
trained on the simulated noisy data portion of CHIME-3. They show
that this filter improves the PESQ score of the audio. This approach
uses an early fusion of the microphone channels before they are pro-
cessed by the DNN, as opposed to our late fusion after the DNN
processes each channel.

Heymann et al [20, 21] also study the combination of multi-
channel beamforming with single-channel neural network model.
Similar to ours, the proposed model consists of a bidirectional LSTM
layer, followed by feedforward layers, in their case three. Of partic-
ular note is the companion paper by Boeddeker et al. [22], which
derives the derivative of an eigenvalue problem involving complex-
valued eigenvectors, allowing their system to propagate errors in the
final SNR through the beamforming and back to the single-channel
DNNs. While we do not optimize our system in this end-to-end man-
ner, the combination of MESSL with the per-channel DNNs may
provide advantages in modeling the spatial information.

This paper builds upon previous work by the authors in [23] and
[24], in which we propose two other methods of improving MESSL:
a naive combination of the MESSL mask with the masks produced
by a LSTM network trained to enhance noisy spectrograms, and
using the LSTM-based masks to initialize the EM algorithm of

MESSL. This previous work also describes a novel supervised-
mvdr beamforming technique to obtain cleaner references for the
CHiME-3 dataset.

3. METHODS

3.1. Training the Networks to Enhance the MESSL Masks

To improve the quality of the binary masks produced by MESSL,
we trained LSTM neural networks to enhance a MESSL mask when
passing this mask and its associated noisy spectrogram through the
network. We tested four different training targets: ideal amplitude
(IA) masks, phase sensitive (PA) masks, magnitude spectrum (MS)
approximations and phase-sensitive (PS) spectrum approximations ,
based on work by Erdogan et al. [25], as shown in Table 1.

The LSTM operates on single-channel recordings. Each chan-
nel in the multi-channel recording is processed independently and in
parallel by the LSTM, following [26]. In the single-channel setting,
the short-time Fourier transform of the recorded noisy signal, y(ω, t)
is assumed to be

y(ω, t) = s(ω, t) + n(ω, t) (1)

where s(ω, t) is the (possibly reverberant) target speech and n(ω, t)



Fig. 2. An example of the MA-trained Mask-Enhancer net-
work using the noisy spectrogram from channel 1 in utterance
F01 050C0103 BUS in the development set and its MESSL mask
to produce an enhanced time-frequency mask.

is non-stationary additive noise. For the purposes of defining the
targets and cost functions in Table 1, let

θω,t = 6 s(ω, t)− 6 y(ω, t) (2)

i.e., the phase difference between the target clean spectrogram and
the input noisy spectrogram. In each case the network was config-
ured to output a [0, 1] valued mask m̂(ω, t) for each frame of the
input noisy spectrogram.

For the masks targets, the network was trained to minimize the
binary cross-entropy loss, while for the spectrum approximations
targets the network was trained to minimize the mean-squared error.
While in theory phase-sensitive masks may have negative values,
causing problems with the cross-entropy loss function, in practice
these were rare enough that we simply clipped those values to be 0.

For each training target type, we explored various hyper-
parameter combinations: single or double bi-directional LSTM
layers of size 256, 512, 1024 or 2048; merging of the bi-directional
forward and backward outputs by summing, multiplying, averaging
or concatenating; using a sigmoid or hard sigmoid (a piece-wise
linear approximation of sigmoid that is faster to compute) for the
output layer activation function. The exploration was done by ran-
domly generating a network from the above 64 combinations and
training it until the loss on the development set no-longer improved.
For each training type, we report our best configuration in Table 2.

The spectrogram inputs were converted from a linear to decibel
scale, and normalized to mean 0 and variance 1 at each frequency
bin. The MESSL binary masks were passed through the logit func-
tion. To perform the computation and training of our LSTM neural
networks, we used the KERAS python library [27], built upon the
Tensorflow library [28].

Figure 2 gives an example of how one of our networks has
learned how to use the noisy spectrogram to refine a mask produced
by MESSL.

3.2. Enhancement of the MESSL Mask

A flowchart illustrating the framework of our methods is shown in
Figure 1. We extract six spectrograms from six-channel audio files
using short-time Fourier transform (STFT). The window size is 1024
(64ms at 16kHz). We then use one of our models described above
to enhance the mask produced by MESSL, using the six different
channel spectrograms. Those six enhanced masks are combined into
one by taking the maximum. We tried different ways of combining
the MESSL mask and LSTM enhanced mask (average, maximum,
minimum, or LSTM output only) into a final mask. A comparison of
these combination methods is given in Table 3 Then we use this final
mask to estimate noise spatial covariances and perform mask-driven
MVDR beamforming. We apply the same mask as a post filter onto
the corresponding beamformed spectrogram and get the enhanced
audio using the inversed short-time Fourier transform. This audio is
then used to evaluate the quality of the model using the PESQ, SDR
and WER metrics.

4. EXPERIMENTS AND RESULTS

4.1. The CHiME-3 Corpus

The CHiME-3 corpus features both live and simulated, 6-channel
single speaker recordings from 12 different speakers (6 male, 6 fe-
male), in 4 different noisy environments: café, street junction, public
transport and pedestrian area. In our work, we used the official data
split, with 1600 real noisy utterances in the training set for train-
ing, 1640 real noisy utterances in the development set for valida-
tion. We did not use the simulated data to train our models. We
tested our models on the proposed 2640 utterances in the test set,
which contains audio both from real noisy recordings and simulated
noisy recordings. In order to perform speech recognition, we used
the Kaldi toolkit trained on the AMI corpus, which features 8 mi-
crophones, recording overlapping speech in meeting rooms. These
differences provide an additional challenge, but are essential to eval-
uating the generalization abilities of our model.

4.2. Supervised MVDR Speech Reference

Because the real subset of the CHiME-3 recordings were spoken in a
noisy environment, it is not possible to provide a true clean reference
signal for them. Instead, an additional microphone was placed close
to the talker’s mouth to serve as a reference. While this reference
has a higher signal-to-noise ratio than the main microphones, it is
not noise free. In addition, because it is mounted close to the mouth,
it contains sounds that are not desired in a clean output and actually
could hurt ASR performance, namely pops, lip smacks, and other
mouth noises. In order to obtain a cleaner reference signal, we use
the close mic signal as a frequency-dependent voice activity detector
to control the MVDR beamforming of the signals from the array
microphones, as described in [24].

4.3. Evaluation Metrics

We evaluate the performance of our enhancement system in terms
of both speech quality and intelligibility to a speech recognizer.
For quality, we use the Signal-to-Distortion Ratio (SDR) from the
BSS Eval toolkit [16] and the Perceptual Evaluation of Speech
Quality (PESQ) score [29]. PESQ is measured in units of mean
opinion score (MOS) between 0 and 5, higher being better. For
SDR, we used the source-based (not spatial image-based) scoring.
For the simulated data, the reference signals were given by the booth



Table 2. Best hyper-parameter settings found for each training tar-
get. Multiple layer sizes indicates multiple layers.

Training
Target Type

Size of
LSTM Layer(s)

Bi-direction
Merge Mode

Output
Activation

IA 512 average hard sigmoid
PS (512,1024) concatenation sigmoid
MA 512 average hard sigmoid
PA (512, 2048) concatenation hard sigmoid

recordings of CHiME-3. For the real data, the reference signals
were given by the supervised MVDR for the target speech, and the
approximation of the noise signals of the individual microphone
channels were computed by subtracting the reference. Since we
have no real ground truth audio for the real dataset, the SDR scores
reported on that dataset should be taken with a grain of salt. SDR
is measured in decibels, with higher values being better. PESQ
is fairly accurate at predicting subjective quality scores for speech
enhancement, but has the advantage for CHiME-3 of not requiring
a reference for the noise sources. The supervised MVDR signal
served as the speech reference for PESQ.

We also evaluate the enhanced speech by Word Error Rate
(WER) using Kaldi automatic speech recognizer. We train our Kaldi
recognizer on AMI corpus. The training and test sets differ signif-
icantly in the number of microphones, array geometry, amount of
reverberation, microphone array distance, amount and type of noise,
speaking style, and vocabulary[30]. After the training and testing
setup, we can evaluate the performance of our enhancement system
in reducing the mismatch between training and testing data. WER is
measured in percent, with lower values being better.

4.4. Baseline system

As a baseline, we use our own implementation of the method of
Souden et al. [31]. This approach generalizes improved minima-
controlled recursive averaging [32] to multichannel signals to esti-
mate the speech presence probability. This speech presence prob-
ability is then used to estimate the spatial covariance matrix of the
noise, which is used to compute an MVDR beamformer.

4.5. Results

As detailed in section 3.1, we explored various architectures for each
training target. We report the best architecture configurations in Ta-
ble 1, as measured by the loss on the CHiME-3 dev set.

As detailed in section 3.2, we then tried various methods of com-
bining the enhanced masks with the MESSL masks, from the best
networks for each training target. As shown in Table 3, we found
that averaging the enhanced masks given by the model trained on
ideal-amplitude targets produced the best results on the dev set.

Finally, we fully evaluated our best model (IA, Avg) using the
PESQ, SDR and WER metrics. The comparison to the baselines is
shown in Tables 4 and 5. Compared to the method of Souden et
al. [31], our mask-enhancer method achieves better scores across all
three metrics and on both the dev and test dataset, over both the real
and simulated data set, with one exception for the SDR score over the
simulated test set. Compared to MESSL, our method improves the
PESQ scores over the dev and test dataset, while achieving similar
WER scores.

Table 3. Comparison of WER for different methods of combining
the enhanced mask with the MESSL mask, using the best performing
model for each training target. (see Table 2).

Avg Min Max LSTM

IA Dev 19.3 19.7 21.3 20.1
Test 32.6 32.3 33.1 32.0

PS Dev 24.4 19.7 19.5 51.0
Test 39.9 32.3 32.1 84.8

MA Dev 29.1 19.7 20.0 69.6
Test 45.3 32.3 32.4 85.7

PA Dev 20.1 19.7 20.0 33.7
Test 34.1 32.3 32.1 64.8

Table 4. Results of PESQ and SDR comparing the best perform-
ing system from Table 3 with several baselines, over the simulated
portion of the CHiME-3 eval and test data.

PESQ (MOS) SDR (dB)
(SIMU data) Dev Test Dev Test

MESSL [12] 3.18 3.10 6.00 2.38
Souden [31] 2.31 2.44 3.92 4.35
Mask Enhancer 3.15 3.13 6.24 2.57

Table 5. Results of all metrics comparing the best performing sys-
tem from Table 3 with several baselines, over the real portion of the
CHiME-3 eval and test data.

PESQ (MOS) SDR (dB) WER (%)
(REAL data) Dev Test Dev Test Dev Test

MESSL [12] 2.65 2.37 6.42 5.38 19.7 32.3
Souden [31] 2.14 2.05 3.21 2.37 37.4 52.3
Mask Enhancer 2.73 2.47 7.07 5.97 19.3 32.6

5. CONCLUSION AND FUTURE WORK

In this paper we propose a novel method to adapt parallel single-
channel LSTM-based enhancement to multi-channel audio, combin-
ing the speech-signal modeling power of the LSTM neural network
with the spatial clustering power of MESSL, further enhancing the
audio. We show that this method can help MESLL improve the qual-
ity of audio, with similar intelligibility.

Our future work will continue to explore different ways of in-
tegrating the LSTM speech-signal model with MESSL. Preliminary
results show that the spatial information is more valuable than the
single-channel speech information with respect to WER. To further
test this hypothesis,the next step is to integrate a mask cleaning
LSTM model in each loop of MESSL’s EM algorithm, i.e use the
mask enhancer model to clean the MESSL masks before the estima-
tion of the spatial parameters.
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